Chapeter 10 Endfire Antennas

TRAVELING WAVE ENDFIRE ANTENNAS

On page 100 we discussed the endfire array of two isotropic antennas and
on page 105 the general N element linear array. One of the special cases
of this array is an endfire array. From page 105 the electric field for
an N element linear array is given by

E- E sin(N ¥/2)
~ o Sin(¢/2)

where ¥ = BdCos ® + § , d is the distance between elements, 6 the angle
from the axis of the array, and § is the equal phase shift between elements.
If we have the restriction § = -Bd, then the array will have no back-
lobe (endfire). A wave traveling on a transmission line with the free

space velocity will just fit this criterion.

Also discussed on page 107 was the increased directivity endfire array of
Hansen and Woodyard. This required that the phase shift between elements
be increased by a factor 77 /N radians. There is an extra half wavelength
phase shift over and above the free space shift. We can get increased phase
shift over a given length by using slow wave structures (like waves in a
dielectric). We want to discuss the general antennas of this type in this
section.

The antennas fall into two categories. The first can be considered an
array of N elements all having equal structure and radiation pattern. In
almost all cases the elements will also have equal amplitude. These cases
are covered by the analysis given on page 105. Once we know the phase shift
between the elements, § , we can calculate the radiation patterns. The
polarization of the wave is determined by the radiation from the single
periodic element, such as the single loop of a helical antenna. The second
type of antenna is a continuous array where the individual elements of the
array cannot be distinquished. We have already discussed one of these types
on page 164 when we covered traveling wave currents on long wires. It will
be helpful to solve the problem of a continuous array of isotropic elements
excited by a traveling wave. Using the notation given on page 164, we can
say the excitation voltage or electric field is given by

E = Es e—jf%DEP

where p 1is the relative propagation constant of the wave. From page 117,
the pattern of a continuous array on the Z axis is given by the integral:

% ,

2
The solution to this integral is found on page 117; after normalizing we get

£ = (%)
7

where ¥ = B L(P - Cos 8 ). We can use this to find approximate patterns
even for periodic surface wave structures where the repeat length is small
in wavelengths, The traveling wave current is one of the types of endfire
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Chapeter 10 Endfire Antennas

antennas. In this case the element pattern is an incremental dipole

which has a null in the direction of the axis of the array. Patterns

for this antenna are given on pages 165 and 166. We can generate a

similiar set of patterns for various lengths of the antenm which are

given on pages 350 and 351. In all cases the beamwidth narrows for increased
length of the antenna in wavelengths. Note too that the first sidelobe

level on all the patterns is identical (13.3 dB). We can get these patterns
from the curve on page 119 for the uniform continuous array which also has

the general shape Sin (X)/X by a change of variable on the abscissa to

y/2, ¢ = BL(P - Cos 9).

Using the patterns, we can generate a plot of directivity versus the length
for a continuous array of various lengths. The curve is given on page 352.
Similiarly a curve of the 3 dB beamwidth has been plotted on page 353 and

on page 354 is a curve of the location of the first sidelobe. On all these
curves is plotted also the Hansen and Woodyard array.

If we want the Hansen and Woodyard array, the relative propagation constant
must be adjusted to the length of the array. The condition is that there
must be an extra half wavelength phase shift through the length of the array.
The extra phase shift is achieved by using a slow wave structure which
corresponds..to a relative propagation constant given by

1 + 2L
Po= 2L
The directivity of a continuous Hansen and Woodyard array is given on page
352 along with the free space velocity case. The Hansen & Woodyard design
has considerable more directivity than the free space velocity case. When
the length of the antenna is increased by 2, the directivity increases by
approximately 3 dB (exact for the free space velocity case). The practical
antenna is limited in gain to that obtained with about 10 or 20 wavelengths.
This falls off even quicker when the aperture distribution decreases along
the surface wave device which happens if the transverse dimensions of the
structure are varied or are caused by the end effects of the antenna.

On pages 355 and 356 are patterns for uniform amplitude aperture distribution
line sources which satisfy the Hansen and Woodyard criterion. Notice that
the relative propagation constant must be adjusted to match the length of

the antenna in each case. The patterns no longer have zero backlobe.

This is similiar to the Yagi antenna which did not give maximum gain at the
dimensions of minimum backlobe. The Yagi antenna can be analyzed as an
endfire traveling wave antenna. Notice that the first sidelobe level has
increased to 9.3 dB. The beamwidth and location of the first sidelobe

were plotted along with the free space velocity cases. The magnitude of

the first sidelobe can be calculated from the following formula.

Sin(wL(P - 1)) )
7L - 1)

This is valid until the sidelobe level is greater than zero; then the pattern
has bificated and the first sidelobes are the main beams.

Sidelobe 13.26 + 20 Log (
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Chapeter 10 Endfire Antennas

In order to understand the role of the relative propagation constant, a
curve of the directivity versus P has been plotted on page 358 for various
lengths of the antenna. The directivity rises until the Hansen and
Woodyard criterion is reached and then falls rapidly afterward. Not shown
directly is that the levels of the sidelobes are rising with increasing P and
the beamwidth is decreasing. On pages 359 and 360 are a series of patterns
showing the effect of increasing the relative propagation constant beyond
the Hansen and Woodyard criterion for an antenna & wavelengths long. The
main beam starts disappearing for P through 1.22 and 1.24 and is gone for
P = 1,25, At P = 1.3 the two sidelobes have joined into a main beam and
the pattern looks normal at P = 1.35 except that the sidelobe levels are
quite high.

GENERATION OF TRAVELING WAVES

We can analyze the dipole as two traveling waves going in opposite directions
on the element. The traveling wave antenna on page 164 was achieved by
loading the end of the antenna so that the mode would not be reflected and
give a standing wave pattern on the antenna. The problem with all traveling
wave endfire antennas is to prevent the reflection of the radiation mode at
the end of the antenna. In some cases the radiation mode is not bound
strongly to the structure. When the end of the antenna is reached, the
radiation mode is only slightly reflected. The energy is coupled into

other modes which satisfy the boundary conditions. Away from the end

these modes die away. The end is tapered sometimes to reduce the reflections
of the radiation mode.

We can also think of the antenna setting up modes on the transmission line
and then tapering the end of the line so that the mode is no longer attached
and it flies off into space. This is similiar to the argument given on
page 24 for the biconical horn. This idea has given rise to a method of
analysis which is equivalent to the aperture field method. The traveling
slow wave antenna must have a discontinuity at the beginning of the antenna
to set up the mode as well as at the end where the mode ends. Between

the discontinuities the slow wave structure is a transmission line which does
not radiate. The antenna is analyzed as a two element array (or more if
there are many discontinuities). There is some difficulty finding the
proper element pattern for the discontinuity, but once it is found, the
patterns will be the a@ame as the other analysis.

The second method of considering the radiation from discontinuities is more
satisfying because the structures of the antennas are transmission line

modes which have zero radiation fields. Modes are set up on dielectric
shapes or on corrugated surfaces (artifical dielectrics) which are open
transmission line modes, but the fields reduce exponentially when moving

away from the surface and do not radiate. From this point of view, the
antenna can only radiate from discontinuities; it also explains the problem
of traveling waves in both directions on the transmission line. The end of
the surface wave structure is like the mouth of a large horn; there is little
reflection.

We have curves for uniform amplitude and equal velocity traveling waves, but
real antennas are not so nice. The amplitude is usually quite high at the
beginning of the slow wave structure and varies throughout the length.

Fundamentals of Antenna Design by ThomadMiill igan Copyright 1981



Copyright 1981

by Thomasdyglligan

= = =
P ji D
k L
i)
=
il
A
=
13 tasd DO
j(an Fesd
et
D 2]
- Hod
Eh P
s ' vﬂ
=
I e
E=] -
5 \U $
-
d Y L
N v
pury
b iai) 3]
=, =) %. o
o (o)
o
- he ’
2 4 B :
14 o]
- © 3
= t > (et
i~
)
=2 = 1@ g )
i
50 ) gr
= .
s 3
0%
= L
i =
T T .
I .
L I
-
|
m‘,
e |
Ci LM
<F 5
N [e) .
iC
m.\\ = [
5 :
2 ~ N
L i - T
ol g a
—)
AL ﬁ \\\\\
] I
Nu ! I
: ! i
&)

0CET 9¥

<

V'S'NNI3GVAW 'O H3SSH B 1344N3IM
S3HONI 0t X £ HONI % OL 0l X 0l

Fundamentals of Antenna Des gn



Chapeter ;gv%qggi

re Antennas
WAVE ENDRIRE LENGTH = 4. P = 1,125

Fundamentals of Antenna Design

‘| - TRAVELING VAVE ENDFIRE LENGTH - 4 P =12

359
\

|

e T i -

TRAVELING WAVE ENOFIRE LENGTH = 4 P=1.15

byThbrﬁaSMiiligah"“ T T

" Copyright 1981



Chapeter 10 Endfire Antennas
TRAVELING WAVE ENOFIRE LENGTH = 4 p =), 24

Fundamentals of Antenna Design

- TRAVELING WAVE ENDFIRE LENGTH = 4_ p =_s_sg '

360

2

by T'homas'l\/l'il*l‘igéh S

~ Copyright 1981 .



Chapeter 10 Endfire Antennas

Many of these antennas have varying dimensions along the length which will
in itself change the amplitude of the fields on the antenna. There will
always be some sort of end effect and reflected wave, but many times this
involves a change of mode which dies out rapidly and has little effect on
the radiation pattern. The uniform distribution along the length will
still give us an approximate pattern and results about these antennas.

GENERAL SURFACE WAVE DEVICE

There are two types of surface wave transmission lines we will discuss. The
first is a two dimensional structure in rectangular coordinates where there
is no dependence on one of the coordinates (Y for example). When we solved
the Helmholtz equation in circular coordinates on page 256, we found that the
propagation constant is only a function of the radial coordinate, , separa-
tion constant and not on the separation constant of @. We will still pick
Z as the direction of propagation which establishes the function set as the
harmonic functions:

e/fBE e/

which are traveling waves in the plus and minus Z directions. We have the
following two cases

*7‘ - TF =

P—

where there is a surface wave device on the Y-Z plane or a circularly symmetric
structure centered on the Z axis. The propagation constants are found
from pages 240 and 260 as:

,%L=/31",5’; ®  f = VAR

In the case of the rectangular coordinates the choice of harmonic functions
are given from the set

sw B, cospx, e oA

None of these functions are suitable because there is bound on X and it would
require infinite energy if we used the standing wave solutioms. If we used
the traveling wave solutions, we cannot say that the structure is guiding the
energy, but merely an obstacle in the path of a passing plane wave. The only
solution is to use the functions:

04 X

e or f’q

. . . X .
We will have to restrict solution to e < or the waves will grow to
infinity as X increases. We will have this solution if

< =/ Bx

This changes the separation constant equation to
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/5;: St

Since ® is positive, the propagation constant in the Z direction on the
structure is always greater than the free space propagation constant, B8 .
This is a slow wave structure

= 2 . 27F
A N 7

where VZ is the velocity of the wave in the : Z direction. For a given
frequency, F, the velocity, Vz’ decreases for an increase in /32.

In circular coordinates we have the same problem as in rectangular coord-
inates. The fields must decay exponentially in the radial direction.
Neither the Bessel function, Jn(/BFf’)’ or the Neumann function, Yn(ﬁfp),
is a suitable function because they are standing waves and require infinite
energy on an open structure. A field decribed by the Hankel functions,

H (ﬁ%f) and Hz(ﬁ}f>) are traveling waves or unbounded waves of a plane
wave described”in circular coordinates. We must use modified Bessel

functions which are similiar to A r
e Anvg r

This leads us to solutions which have complex /3P . The equation for the
propagation constant becomes

/GQ} =-/é327f o ' o ::\/>é%°

This is the same equation as for the two dimensional rectangular coordinate
case,

Once we know the exponential rate of decrease of the fields away from the
surface wave structure, we can find the relative propagation constant, P,

/Z;:= ‘ﬁ?zf7l-= /£?1<//7L c(f/)

VL
P://+/£‘-: _ /_/_(%)z

Solving for X we get

= AT

Once we have found the relationship between the dimensions of a structure and
the constant & , we can design the antenna to a given relative propagation
constant P. P is a measure of the boundness of the wave to the structure.
For large < the fields are concentrated near the slow wave structure. This
corresponds to large values of P. As P approaches one, the wave is only
lightly bound to the structure. On page 363 is a plot of distances from the
slow wave structure for given field levels versus the relative propagation
constant. We can see from the plot that the fields fall off very

rapidly from the slow wave structure and are definitely not radiating.

We will need to investigate some unconventional transmission line structures
all which will be open structures and have exponentially decaying fields
surrounding them.
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Chapeter 10 Endfire Antennas

LEAKY WAVES

There are transmission structures whose relative propagation constants, P,
are less than one. If we assume a uniform amplitude along the structure, then
we can use the same pattern function as on page 348.

& = Cfﬂu(}@éj
7

The leaky wave structure continuously leaks energy along its length. The
propagation constant includes an attenuation constant due to the energy leak-
age.

¢ =L (P-cas 4)

-y
T I%3
x, is the attenuation. 1If the attenuation is small, which it must be on a
long structure, then we can ignore it. The maximum radiation occurs when
¥ =o.
-1

2] = Cos P

max
In order to have a wave with a relative propagation constant less than one, we
must have a structure which will:support fast waves. That is, ones whose
phase velocities are greater than the free space speed of light. Waveguide
modes have phase velocities which are fast waves (see page 205). If the guide
is openned up, then the energy will leak out and radiate.

We can use the uniform amplitude distribution to find an upper bound on the
gain of a cylindrical structure versus length. A pattern of such an antenna
which is four wavelengths long and scanned to an angle of 45° is given on page
363b. The first sidelobe is down 13.3 dB as for a unifrom amplitude. The
relative propagation constant is 0.707 (P = Cos 45°). We can find the
directivity by integrating the pattern. If we fix the length and vary the
velocity to scan the beam, then we find that the directivity is constant until
the two beams are joined into a single endfire beam. We can calculate the
directivity when P = 0, broadside radiation, and use it for the scanned beam.
This has been done and is plotted on page 363c. The beamwidth increases as
the beam is scanned toward endfire, which is plotted on page 363d.

Consider a continuous traveling wave antenna as it scans toward endfire. If
we pick a particular length, then we can see that there is a considerable
difference between the directivity given on page 352 and on page 363c. The
directivity drops because there is a cone beam instead of a single endfire
beam. A length of 10 wavelengths was picked and scanned from near endfire
into endfire (P = 1) and beyond to super directive (Hansen and Woodyard
criterion). On page 363e is a plot of directivity versus P. For lower
values on the curve, the directivity is constant. The directivity rises
rapidly as the beams join together. Beyond the super directive point the
directivity drops rapidly as the sidelobes become about the same level as
the main beam. The same result was seen on page 358.

The relative propagation constant of a waveguide is a function of the ratio
of the cutoff frequency to the operating frequency.

363a
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P=v /- (trpe)® =~/ = (M)

The beam approaches endfire as the frequency increases and approaches broad-
side as the cutoff frequency is approached. Because the leaky wave antenna
is an internal field device, unlike the slow wave antenna, it is necessary

to load the end. Without it, the wave will be reflected and radiate another
beam in the backfire direction. The backfire beam will be attenuated because
the internal wave is reduced as the wave leaks energy into radiation.

The waveguide can be made into a leaky wave antenna by cutting a slot in the
wall such as the top and varying the distance from the center line to control
the leakage. Another method is to cut a series of closely spaced slots and
control the leakage by the placement or length of each slot. We can include
waveguide slots arrays with large spacings as leaky wave devices except that
the slots appear as finite loads and cannot be analyzed as a continuous
structure. The restriction on directivity for a given length plotted above
will also hold for these antennas.

As the wave propagates along the waveguide, it continuously losses energy. It
is necessary for the wave slots to leak more and more of the remaining energy
to obtain a uniform distribution. For closely spaced wall slots, it is
necessary to continuously increase the loading on the waveguide when moving
down the guide toward the termination. Suppose the attenuation is given by

XK (z). The power at any point in the guide is given by

R~
“P(2) = Ecz) exp( _.[O((Z) dz )

E_1is the initial field. The attenuation is expressed in nepers/ length.
Suppose we have a desired amplitude variation: A(z).

L
_ 2
P, = /lA(z)[ dz  + Py .

a

We assume that a ratio of the input power will be lost in the load.

Pload = R Pin

L
l 2
Pin i )flA(z)l dz

-}

The power anywhere along the leaky wave antenna is given by
i L
B(z) = P, - [|A(z)|? dz
in
o
If we differentiate this, we get the expression

% = - IA(Z)IZ

The attenuation equation gives us the usual logarithm differential equation.
363g
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dp

dz

1
P(z2)

Using these equationms, (z),
the desired aperture distribution.

1
¢

- 2X(z)

the attenuation, can be found as a function of

A ?

o (z) T

1-R

BRILLOUIN DIAGRAM

L
[ (AC2)] % dz
0

+
- J/h[A(z)IZ dz
°

The various mode velocities of a transmission line structure can be described

by a k_vs. B; diagram. k_

is the free space propagation constant, 277/ A, .

/9% is Phe mode propagation constant for a wave assumed to be traveling in

the Z direction.

~45°

Backward Traﬁeling
Wave

A free space wave has the following diagram.

Ko 45°

Forward Traveling
Wave

Az

A TEM mode on a transmission line has the following diagram when dielectric

loaded.

AN
\—\45° K 45%
- /
AN 73N7Z?3/
AN
\ /
\ /
\ /
P~

Bz

This is a slow wave because the curve lies below the *45° lines.

A waveguide will not propagate until

the frequency is higher than the cutoff
higher and higher the waveguide propag-

frequency. As the frequency becomes
ation constant will approach the free space value.
N\
N \\\\\\\\§\-__
N
A\
AN
AN
AN
N

Ko
/
k. / Waveguide
7
ke P Slope: Relati&e Group Velocity
/
Slope: Relative Phase Velocity
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In this example we can identify the relative phase velocity as the slope of
the line drawn from the origin to a point on the curve. The slope is
always greater than one which means that the wave is fast in a waveguide.
The slope of the line which is tangent to the curve is the relative group
velocity. Since this is the velocity of energy transfer, it cannot be
greater than one. The second curve is the next higher order mode.

We can divide the Brillouin diagram into various regions.

Ko

-45° 45°
P Fast | Waves

Backward\Waves Forwafd Waves

Slow Waves Slow Waves

P

If the &S_ curve lies below the *45° lines, it is a slow wave structure. Slow
waves are bound to the surface of an open structure. and can only radiate at
discontinuities or by coupling to radiating fast wave modes. All the open
structures we will discuss are slow wave structures. Open structures cannot
support fast waves since the energy is quickly radiated. Fast waves must be
contained inside waveguide structures to be non-radiating. When fast waves
are allowed to be coupled to free space, they radiate readily.

Although slow wave and fast wave (leaky wave) radiating structures can be
analyzed with similiar mathematics, it is important to realize that they are
describing different types of radiation. The slow wave structure radiates at
discontinuities. The leaky wave antenna radiates everywhere that it can
couple to free space. The only similiarity is that both structures are
traveling wave radiators. When properly designed, the slow wave antenna

is an endfire antenna. But of course, it is possible to get an antenna

which is not endfire such as the example on page 360 because of an improper
design and still a slow wave structure. A fast wave antenna has its radiation
peak between broadside and endfire but not at either.

For a given structure the type of wave can be measured by using a near field
probe. A method of measuring phase is required as the probe is moved along
the axis. By comparing the change of phase relative to what would be measured
in a free space wave, the type of operation determined and the value of

the relative propagation constant, P, measured.

3631
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DIELECTRIC SLAB

Consider a dielectric slab in the Y-Z plane as shown below.

P S 2 N

LRI I I

Y

3

From our solution of the Helmholtz equation in rectangular coordinates, we
know the potential function in the two regions.

-2mb :
% = A e il @‘J/gé% Region 1
s (T Px X )
¢7— = A A ) e v/ Region 2

cos (.217;\5.'8)

Where 27b/A was substituted for . and 2wp_/A was substituted for B
These substitutions make it easier to identify the solution on a per
wavelength basis. We can pick a scalar potential in region 2 which is either
an odd function (sine) or even function (cosine) of the X coordinate. The
scalar potential in region 3 will depend on the choice.

2mb
%3':(1)’4/@”

TI e ,//8;% Region 3
Where the ( + ) sign corresponds to the odd mode function in region 2 and the
( - ) sign corresponds to the even mode function in region 2 (cosine)., We
have only assumed a wave traveling in the positive Z direction. The
constants p_and b will be found by satisfying the boundary conditions at
x = af2 and - x = -a/2 and restrictions on the propagation constant.

First the propagation constant must be equal in both regions.
z 2 A 2 i
Bz = Ba + (é}\".@) = cazé.,/do + (%\-’é) Region 1 and 3
2 2 2 Be Lk 27 Px ‘ :
B = 5, _(/\) = WeEM, - 3 ) Region 2
Equating these equations gives us the first equation.
z T 2
T el _ o
o+ (29" = o, — ()

We can find a second equation by matching the tangential fields across the
boundary at X = a/2, We will assume that there is no Y variation

(®¥13y = 0).
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TE Fields

From the equations on page 237 we can find the fields for TE modes with no
Y variation.

_ s o
E,=0 HX—J“‘}“ YEE:
Y4
E}/—'"‘; ///:0
= = L __a_: z - 2
fmo e (e BN = 2 (e

Be- By = (277'19) (21rb

This is a horizontally polarized field with respect to the dielectric and
free space boundary. Performing the indicated operations, we get the follow-
ing tangential fields.

= - A Z77'b 211.6 -
EV: "‘;"‘"‘ A ‘/'Bi Region 1

cos (ZT;PX %) ~/ P ®
e

Ez = (t) A, 2w Region 2

A (s (3P )

A

z - Znb ,

= “(szb) ,’4' e TXQ‘J/B?% Region 1
2mA x
SIV .

( A ) eU/Bi Z Region 2

J /“‘ cos(%ﬁ‘-x)

These fields must be continuous across the boundary X = a/2. We equate
the fields and obtain the following equations.

2mb _-%Wbq 2P cos (ZTXP’( %) .
A p) y
s (Px &)
A 2
2 _zrmb & g AT a
Trb) 3 sw (T4
_4 (A ¢ o (2”/”9 2 H_ Field

A2

If we take the ratio of these equations, we can eliminate the constants A1
and A2, and get the following equations in the propagation constants.
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b - (+) TE 7 (T 4)
Ao A cor (TP a)

This is the second equation in the set of two simultaneous equations. The
upper portion corresponds to an odd mode solution of ¢ (sine) in X and the
lower portion to the even mode solution (cosine). Before proceeding to the
solution of these equations, let us consider the TM modes.

TM Fields

From the equations on page 238 we can find the fields for TM modes with no
Y variation.

Bx T jae ox o e
- —-14
Ey =0 Hy 3

Ea st (B*-B2) Hy =0

This is a vertically polarized field with respect to the dielectric and free
space boundary. Performing the indicated operations, we get the following
tangential fields.

21Tb - Z’lTb X -, B, 2
( )weo AT e J/B% Region 1
ra 21TE .
E, = (% Az SW( A Kx) ‘J)Bi‘g Region 2
22 A ‘—'C(Jé' e &
v/ / COS (:2—/-’1\& z)
//y, = ___..._-2/7\7'6 /4, e—'z-}é)‘ e'Jﬁ*% Region 1

() erte g [ =B ] AE apin s
A S (Z_E\r__ﬁs 2)

These tangential fields must be equal at the boundary X = a/2.

(_/T_.) /}, _%"__._ZQ_ (ZWPx)g ’ (/\ 7) E, Field
/ <c 217 P
(P 9)
-2mb a
_27713 4 e A 7z = (%) 2P, Cos (L 2)  ried
-——-—-/‘ 2 ie
T P y
sw(5H4)
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I1f we take the ratio of these equations, we get the following equationms.

(*) TR +an (;_Z%;_)
/I éo A €, . -
o7 ( E{/‘ Q)

Except for an interchange of € and/o{ , this is the same equation as for the
TE mode case,

We are left with the problem of solving a simultaneous set of equations for

the propagation comnstant. Take the second equation and multiply through
by a, so that we get a dimensionless equation.

S (mea) - (2)npg | (R

TE Modes
coT (-__’_}\& a_)
€, — Tan ( TE
_é:_(Ir/\—bq) - (I)IT:\E)SQ I/w(/\"a,)) TM Modes
coT (-11& a
A

We get the following result from the propagation constant equation.

(zrré _ og’“(eyq, —6/40) - (@)1

Multiply through by (a/Z)2 and take the square root to obtain:

b

Py w/(&JZTG})L(‘?}"/ ”éy"o) - (7-:—‘&‘)L

When we substitute this in the set of equations above, we get a single
equation in the separation constant.

1l

[on—n1 ey - )]
COT(Z.T&Q)

/C-Q-LZC}) (G}q, —W") —(T_F,\Ex_q)t :(+) (-rng< ) Tav (Trp"cl) o
Co-r(”f:kq)

We can solve this equation graphically for the separation constant. Before
we do this, we should consider the concept of the cutoff frequency. The
wave is bound to the slab only if «x > 0; otherwise it is only a passing plane
wave. We define cutoff as &« = 0, At this point the equation becomes

2:(&( - wm‘, = w/en, ej _
]
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The expression w@oequa‘ls B = 27

Ac
'277/0" 27 €
—— = — = M,
€, X = _
A( /‘( a/‘llo —_ / PC éd/((o /

This gives us an equation for PX at cutoff., We must also satisfy the
propagation constant equation from equating the fields on the boundary.

Tan (TP 2
a) = co7 (7Ex —
Ao ) (/‘c Q) =0
These equations are satisfied if

0, 2, 4,... for Tan('): 0dd ¥
z n=1, 3, 5,... for Cot( ): Even ¢
Using these equations, we can solve for the cutoff wavelength.
Ac = 2a [<,
h Colly /

For odd W the cutoff frequency will be zero. Remember that the cutoff
frequency is that point where the fields become bound to the dielectric
slab,

The usual method of finding the separation constant, wp_a/A , is to use a
graphical solution, We plot both sides of the expressi}én in the separation
constant as a function of 7P a/A and find the solution as the intersection
of the curves. The function

[ @ () — ()

is the equation of a circle with valid solutions in the first quadrant. The
maximum value is given by

774 [ e, M,
A € -/

The above expression intersects with the curve

(2) 22 (mpa) [T (P55

9

TE Modes
a
or (28
S
(i)% (E’_/\”ﬁ) T ( /‘x ) TM Modes

coT (f_%_q_)

For a given value of /40/,!41 or 60/ €., we can plot both of these curves
as a function:of (7/']5'X a/ A ) and find intersections, As the frequency
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increases or the thickness increases, the circle diameter will grow and the
separation constant (77PX a/)\ ) will increase.

On page 370 is a mode chart for the dielectric slab guide for TE modes where
M =M., This is a graphical solution of the transcendental equation of
th8 separation constant, Two circles have been drawn on the plot which
correspond to the cases:

1) Thickness
2) Thickness

The first circle only intersects one of the vertical curves while the second
case intersects two vertical curves. There is only one possible mode in case
one. We can read the value of the separation constant at the intersection

of the two curves as 0.73 . The vertical coordinate on the graph correspoiids
to 77b (a/A ) or the attenuation constant times the thickness of the slab,

We read this value as 0.67 . The second case has two intersections,

.25\ , Dielectric Constant = 2,55
1/2A , Dielectric Constant = 2,55

n TR a/A b (a/) ) b P
0 1,02 1.68 1.070 1l.44
1 1,88 0.60 . 382 1.07.

There are two possible TE modes for this thickness and dielectric constant.

We can find the relative propagation constant from a formula on page 362.

F> = A 2
J:+(_5%<:) O(,:J;ré)

AN et

Hence in the first case above
7b (a/A) = 0.67 b= 085" P = 1,31

The mode chart for TM modes is plotted on page 371. In this case we must use
a different curve for each dielectric constant; shown on the plot are three
typical dielectric constants. The lower circle is drawn for a thickness of
a quarter wavelength for a dielectric constant of 2.5. In this case the
value of 7b (a/)\ ) is .44 which converts to a value for b = .56 and a
relative propagation constant, P, equal to 1.15 ., If we draw the circles
for the dielectric constants of 5 and 10, we get calculated values of P of
1,57 and 2.52, respectively. The surface wave is more strongly bound to

the higher dielectric constant slabs.

By solving the transcendental equation, a set of curves of the relative
propagation constant can be drawn for various dielectric constants versus
the thickness. “Curves for the two lowest order modes are drawn on pages
372 through 375. These curves enable us to be able to design the dielectric
slab guide to a particular velocity.
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DIELECTRIC SLAB ON A GROUND PLANE

Suppose we have a dielectric slab on a ground plane whose thickness is a/2.

X
A
AN N N N
\‘ N \:\\ a/2
//////////////////////////////* o Z

The thickness was picked to be a/2 so that the results of the full slab may be
applied to this case. We have the requirement that the tangential electric
field must be zero on the ground plane.

TE Solution

From page 365 the tangential electric field is the Y component. In the slab
the fields are given by

Co, amfx .
= (%) 4, Q"& s (a) o/ Pe?
Sin (3T
(g x)
The requirement is that E_ = 0 at X = 0; hence we can only use the even

solution for the scalar pozential. The equation for the separation constant,
(TP, a/\ ) becomes

L
\/(“)(“' ) - (522)" =~ (1ha) o (mc)
A, A A
and the cutoff wavelengths are given by

/\c = ‘ZFC(' €’/“l
€M,

The slab will only support a TE mode (horizontally polarized) if the slab is
thick enough.

-/ h= 1,3, 57 7

N

T™ Solution

The tangential electric field in the dielectric slab is the Z component which
is given on page 366.

P\ Sw (T :
Ee, = (%“) .j; ( "PX) o/ Pe®
JC L cos (2
(irf )

This electric field is zero at X = 0 which restricts the scalar potential to an
odd function. The equation for the separation constant, (77'PX a/A ) becomes

Z) G 1) - (39 = & (e ()

and the cutoff wavelengths are given by /L:= 2z € M,

- n= 0240l
€My ! st
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The slab will support a TM mode (vertically polarized) to zero frequency.

The dielectric slab cases can be summarized.

1) A free standing slab will support TE modes (horizontally polarized)
and TM modes (vertically polarized) to zero frequency.

2) A slab backed by a ground plane will support a T™M (vertically
polarized) solution to zero frequency, but a TE (horizontally
polarized) solution has a finite cutoff wavelength.

EXCITATION OF DIELECTRIC SLAB GUIDES

The dielectric slab guide may be excited by a passing wave. The possible mode
that will be excited depends on the incident fields. We need to expand the
fields on both sides of the slab guide to determine the requirements of the
excitation wave, The scalar potential function for the solutions are given
on page 364,
-21mb .
Y= Ae T X P

. 4, SN (Z—TL/\EX—JS)

C 2 xx
0S ( "’g /)

%S = (i) A, e %%blfé?ijsai}
! { x

NNANR NN .
NANN AN

IE Fields: These fields are horizontally polarized to the plane of the slab
and are given by

- oV
E, = 9oV
7Y ox

- -2mby
Gy = ~Hb4 e AX ot

Eys = (2 "ZAI'é'.‘)' € 2_’7#;(@7"8*%

The odd mode solution requires that the excitation fields be 180° out of phase
on different sides of the slab. The possible n of the mode comes from the
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set (0, 2, 4,...). This includes the zero order mode which has no low
frequency cutoff. The mode may be fed out a waveguide in the TE20 mode.

/

N\

AN

TE20

|

AN
N \\

rr—]

TEn Mode in Dielectric n = 0, 2, 4,

The pattern of the traveling wave antenna will have a null on axis like the

traveling wave current patterns on page 164 and like the TE20 mode given on
page 244,

Consider the even mode solution. There are equal horizontally polarized fields
on both sides of the slab, A waveguide may excite this mode with the TE

mode. 10
Ty
N
_ l‘*\\ d
SNl
N

TEn Mode in Dielectric n=1 3, 5,

The slab must be thick enough to support the TE1 mode which is determined from
the curves on page 375.

TM Fields: These fields are vertically polarized with respect to the plane of
the slab. We can expand the electric fields in the upper and lower regions.

=_L ¢
X Jwe ox03
E;(, = «-§i (—Z—Z‘Lé)/), e—_Z_:‘_T_éX e"\/’lg’z% Region 1
€.
EX3 = (—?) % ('2;7-7'—-1’)/1, e-.?-:-"-é?,re_J/'g_t_z Region 3

The even mode solution requires that the electric field be in the same
direction on both sides of the slab, We can achieve this by feeding with a
waveguide in the TElO mode.
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sl
- R
—_—
- __
-

TMn Mode in the Dielectric n=s1l, 3, 5, ...

These correspond to the solutions given on page 374 and requires that the slab
be thick enough to support the modes n =1, 3, 5, ... .

The odd mode solutions can support waves without a cutoff frequency, but the
fields are in opposite directions on the opposite sides of the slab. We can
feed the slab with a waveguide in the TE02 mode which will give us a null on

axis. '
| Y-
- TE .. Mode in Waveguide
e S
- | M- TMn Mode in Dielectric n =0, 2, ...

SLABS ON GROUND PLANES

We can also excite slabs on ground planes, The most common configuration is

a TM0 solution because a thin dielectric can be excited on a ground plane by

a vertically polarized wave since there is no low frequency cutoff for this wave.
Remember that below cutoff, the wave is not bound to the dielectric. In a
similiar manner we can excite TE modes on a grounded slab, The slab must

be thick enough to support the wave.

QE
‘ TMO Mode in the Dielectric
AN NANNY
379
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CORRUGATED CONDUCTOR

S
U s

A corrugated surface can support TM surface waves if the depth, d, of the
slots is less than A/4. These fields are similiar to the TM fields on page

366 of the dielectric slab guide on a ground plame. They are vertically
polarized with respect to the Y-Z plane.

2
= N4

X J‘*’G 52669 Hx = 0
i -/
Ey, =0 7 ox

E= e (B-p)Y Ha =0

This is a suitable solution since the corrugations will short out any E_ field
at the corrugations. We have assumed that there are many corrugations” per

wavelength and that the corrugations are thin. We will use the same scalar
potential function given on page 364.

U = A, e GEX oV E

Above Corrugations

- 2nb -/B3 T
E = 2mb g 4 & A V%

JoJ&
- 2Th
= _/zmh)" A AL B
= e J
Ez (/\ \/'a)é (4 =

% = Z}é»",eJﬂ eV F2E

From these expressions we can find a
the corrugated surface.

b
z.= o V) (E)on
4 W E, COGO\/)IT

The surface must present this impedance to support the surface waves.
= W o€, =/«° \/{E‘é) /{

= e, 7=[2 2 - s (T)lA b7,
277

Looking into the corrugated surface, we see a series of parallel plate wave-

-X directed wave impedance looking into

0
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guides., The wave impedance per unit length of this structure is
Z—X =J’% ZLAA//Boc/
When we equate these wave impedances, we get the result
b= Zaw pod

The relative propagation constant, P, is found from the equation on page 369.

P = //+ Zaw > od

As an approximation we can allow for the thickness of the corrugations. If the
thickness of the corrugations is t and the gap is g, then we can assume that
the impedance of the edge of the corrugations is zero and average the impedance
of the edges and gaps. The impedance looking into the corrugated surface

is then

= \/' 7o 9
Z_y Core) Can B d

The relative propagation constant becomes

2
P = // + (Tgt) Zan * Bod
+
This function is plotted on page 382 for various thickness to gap ratios. As
the height of the corrugations increases the waves become more and more
bound to the surface. When B,d approaches 777/2, the attenuation
constant of the external fields, & , approaches infinity and the fields will

be zero a short distance from the corrugations. This is the case for corru-
gated horns; the fields were zero at the corrugated surface.

TE FIELDS ON A CORRUGATED SURFACE

Will a corrugated surface support a horizontally polarized wave? Consider
the TE mode solution given on page 365 of the dielectric slab guide. It has
a Y component which would be shorted out by the corrugations. This will
not do. Let us try rotating the corrugated surface so that the corrugations
run in the Z axis direction. Now the E_1is not shorted out by the
corrugations but supported by a parallel glate waveguide system. The fields
above the corrugated surface are given by:

= -4 2b ~Tey _ 8,2
£, 1 2L & TE oI P
= _ [2rb|? - 2b B,
Hy = (Tb) '4,- G‘Tle‘/ﬁ%
J Mo
The wave impedance looking into the corrugated surface is given as
Z‘X= —-E}/

! A
7 = e )

= ~J'°UJJ\/:=J¢7: AN _ - Lo
€, &
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The impedance of the corrugated surface is still given by

2oy = o Sod

This is negative only if 7/2<Bd <77 .
b=~ Co1f/éi,</

The relative propagation constant is given by

P=[/+ ct*pnd

When we average the impedance between the gaps and corrugation thickness, t,
the relative propagation constant becomes

: 1 z
P: \// +(9f—t) COZL ﬁ,d
g
This is plotted on page 384 for various thickness to gap ratios. The depth

of the corrugations must be greater than a quarter wavelength before the
surface wave is supported.

PARALLEL STRIPS

Suppose we have a series of parallel conducting strips instead of the corrugat-
ed conductor.

I X -
1 ¥ 1 1 I i I 1 I 1
d
_ _ _ {
I > 7
d
oL i 1N i U i i i i J.______]__
I1

Space has been divided into the regions above and below the parallel plates.
There are two possible solutions to this problem.

(+) U o 417'6;(

This structure can only support TM waves whose electric field is perpendi-
cular to the top and bottom planes along the edges of the strips which short
out any E_ . The solution in region I is given on page 380 for the corrugated

conductor, 217 .
Z/I= '416-/‘1 ~‘//5’32-
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Chapeter 10 Endfire Antennas

The fields in region II are given as

Yrr = (3:)A4L cf*‘%gkuz GB-J)Bi z

=/ — b - 2
Fre = (7) 2k fede o Frx e
J

() e o B e

qme
Consider the even mode case, i.e. ¢&‘=: ¢&1~§2 A )Z, The electric fields
across the gaps are the same at both ends. This gives us a magnetic wall at
the center line of the strips. In the circuit model the magnetic wall is a
virtual open circuit. The impedance looking into the strips to support this
wave is still

L3

I

z

‘Z-—X = \/'b7o
The parallel plate structure gives an impedance per unit length of

2 = <o ot fod

from the open circuit. This is negative only if 7/2 <fﬁ2dc< 7.

b= - CaZixSQq/

The relative propagation constant is given by

P: /7+ Co ;507

This is the same as the TE mode case for the corrugated conductor. The
solutions curves are given on page 384 using the dimension d given in the
figure above which is half the width of the strips. The strips must be
greater than a half wavelength long and less than one wavelength plus any
integer multiple of wavelengths,

417
The odd mode case, Yz =-%7€° ", has equal and opposite electric fields across
the gaps. There will be an electric wall (short circuit) at the center line
of the strips. This is exactly the case of the corrugated conductor which
is given on page 380. The solution curve is given on page 382 where the
depth is taken as half the strip width., The width of the strips must be less
than a half wavelength plus any integer multiple of a wavelength.

TE MODES ON PARALLEL STRIPS

If we want to support TE waves on some parallel strips, we must rotate the
strips so that they are parallel to the Z axis like the corrugated conductor.

385
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Similiar to the T™M mode case, there are two possible solutions

{ﬂl‘z = (i) szé’i%i

The solution in region I 1is the same as for the corrugated conductor. 1In
region II we will have either the even or odd mode solution.

-~ 2mb _
fﬂr:”;e_/"llze//szg

Eyr = -4, -27‘754’ P e—J'/B*;ﬁ

= _ /)" _zmb :
H (%\“)ﬁ’,j e T X BT

Fdi -, B
er = (DA e F X GVI?

2l _, B2
£y, =(D)A, e 7 er/B*

b - 2z
/=) 4, Tx - B
J QMo
Let us take the odd mode of the scalar potential case first. The electric
field on both sides of the strips are equal giving a magnetic wall (open

circuit) at the plane of the center line of the strips. The impedance
looking into the parallel strips to support the mode is

_2Ey - _w 4 =~/
Z_X-‘;;*\//u" 7ﬂb) \/b
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The impedance of the strips with an open circuit at the center line is
'Z..x = —-J' /7° Cofﬁod

Hence, b = tan( Od) which is positive for d<A/4, The strips are less
than a half wavelength plus any integer multiple of a wavelength. The
relative propagation constant is given by

F= \//—-,L Z‘A/JZ/BGCI

This function is plotted on page 382 where the half strip width is used for
the corrugation depth.

The even mode of the scalar potential has a virtual short circuit at the
center line plane which gives us the same problem as the corrugated conductor.
We can use the solution given on page 38l and the curve on page 384 to find
the relative propagation constant,

Excitation of Parallel Strip Slow Wave Guide

We can feed these parallel strip surface wave structures from waveguides
similiar to the dielectric slab guide. Once we have identified the simil-
iarity of the modes, we can use the information on page 377 for dielectric
slabs to dtermine the feeding waveguide mode.

T™ Mode Strips

The TM mode is vertically polarized with respect to the plane of the corrugated
edges. It is the same as the TM mode in the dielectric slab., The even mode
in the strips corresponds to the even order modes of the dielectric slab.

This may be fed from a waveguide in the TE., mode as shown on page 379. The
strip width must be greater than a half wavélength. The odd mode in the
strips will correspond to the odd mode in the dielectric, therefore it can

be fed from a waveguide in the TE10 mode as shown on page 379.

TE Mode Strips

The TE mode is horizontally polarized with respect to the plane of the
corrugation edges. When we compare the fields on both sides of the series of
strips with that on both sides of the TE mode dielectric slabs, we find that
the even scalar mode also corresponds to the even order mode in the TE mode
dielectric slab. Likewise, the odd modes will match. The odd order mode
can be fed from a waveguide in the TE, , mode as shown on page 378 for the
dielectric slab. The strips are less than a half .wavelength wide for the
odd mode. The even mode can be fed as shown on the top of page 378 with the
waveguide in the TE20 mode.

Corrugated Conductors

The corrugated conductor can be placed on a ground plane. as shown on page 379
with the dielectric slab. The most used configuration is the TM mode
corrugated slab which are placed in the E plane of a horn as shown in the
figure. The corrugation must be less than a quarter wavelength deep.

387
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SLAB SURFACE WAVE RESULTS

In order to understand the effects of surface waves on a ground plane, experi-
ments were performed on a grounded dielectric slab fed as shown on the bottom
of page 379. A ground plane was placed under the E plane aperture of a small
horn which had a 0.095 wavelength thick dielectric slab on it with a dielectric
constant of 2.4, We can find the relative propagation constant from the

chart on page 372 by using twice the dielectric thickness (grounded slab).

The relative propagation constant is 1.065. For every wavelength along the
slab the phase increases (0.065)(360) = 23.4 degrees over that which it would
in free space.

The surface wave structure will capture some of the energy from the horn apert-
ure, slow it down and radiate it at the end. We can think of a new aperture
at the end of the dielectric slab.

Aperture| Phase

|
- , |
|

Aperture

L E * 0.095 )\

NNANAN {,\, N}
The phase of the signal in the aperture above is the vector combination of the
retarded phase energy in the surface wave which is decreasing exponentially
from the surface and the free space energy (not bound to the dielectric). The
thinner the dielectric slab, the more equal to one is the relative propagation
constant and the more the bound fields extend away from the surface (see curve
on page 363). On the other hand the slab must be longer and longer to get the

same phase shift as the thickness becomes thinner and thinner. The resulting
phase will tilt the beam towards the ground plane.

The small horn was placed on a ground plane and the E plane pattern on page

389 was obtained. The beam points up and away from the ground plane, A
grounded slab which gave an excess phase shift of 45 degrees was placed in
front of the horn and the pattern on page 390 was obtained. The beam has
started to bend back toward the ground plane, Then the dielectric slab length
was increased until the excess .phase shift was 90 degrees. The pattern
response is given on page 391. It has a narrowed beam and pointed more towards
the ground plane, These surface wave structures can be used to make the wave
hug the ground plane instead of pointing up as on page 389. We are using a
combination of the direct wave and the surface wave to tilt the beam. If the
of the dielectric slab is increased until the excess length is 180 degrees,
then the pattern will have a null when the energy in both waves is close to
equal.

Let us estimate the ratio of the direct wave to the surface wave by the follow-
ing argument. The bound surface wave will extend out from the surface and
decrease exponentially. The aperture field is assumed to be uniform and the
field not in the surface wave will be in the direct wave. We will match the

388
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Pattern of a Horn on a Ground Plane

#Polar Chart No. 127D
SCIENTIFIC-ATLANTA, INC.
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Pattern of a Horn on a Ground Plane with a 450 Excess

Phase Shift Surface Wave Slab on the Ground Plane
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Pattern of a Horn on a Ground Plane with a 90Q Excess
Phase Shift Surface Wave Slab on the Ground Plane
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_Total Field

the fields in the aperture. — — —| Direct Wave

Division of the Field ur face Wave

{
( |
|

!

a

rr———Aperture‘“—’4

The field in the surface wave will be given by the integral

[ - g9

= AT
=X e

The total available field in the aperture is the width of the aperture times

the total field which is normalized to one. The portion of the wave in the
surface wave is given by:

_ —«4)
Capture Efficiency = (1 e

X A
_ (- E P
2Ira
A VP -y

This function is plotted on page 393. The assumption has been made that the
surface wave device is on the edge of the aperture. When it extends into
the aperture, it will capture more of the energy from the aperture.

392
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CYLINDRICAL SURFACE WAVE STRUCTURES

We can solve for surface waves on cylindrical structures. This requires a
function that decreases exponentially with increasing . On page 257 we
introduced the Hankel function (2); . which is a traveling wave

- P X H: (;ﬂorD)
function similiar to -Jf3f(’ n
e L]

For plane waves in rectangular coordinates we made the following substitution:

= -4PB
to obtain an exponentially decreasing function. This substitution gives the
modified Bessel function of the second kind in cylindrical coordinates.

Kn (xp) = —27(77”+7/,1(Z)(-J'o(/0)

The function is approximately e xf for large arguments.

i
We will expand the scalar potentials in the two regions I and II to obtain the
fields and match the propagation constant and tangential fields across the
boundary.

DIELECTRIC CYLINDER

A dielectric cylinder can support surface waves and bind the wave so that it
is guided by the dielectric. We will consider TE modes and TM modes on the
cylinder which have a finite cut-off frequency and then the hybrid mode which
has no low frequency cut off, Remember that below cutoff the surface wave
device no longer guides passing waves, but only looks like an obstacle to a
passing wave.,

TE Modes
A TE mode will have an electric vector potential with only a Z component for

a generating function, We will divide the potential into two parts inside
and outside the dielectric. The two potential functions are given as:

yll = kn(:?‘/',r—éf) Cos ”?S G’—‘/./Be-z- Region I

%Z = I <_2_;\”—ff)) COS"“]S e-'/ﬁéa Region II

The modified Bessel function is used in region I so that the fields will die
away exponentially from the surface so that there will not be infinite energy

394
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in the wave. In region II the only possible solution is the Bessel function;
the Neumann function is excluded because the origin is included. The fields
are obtained from the following differential expressions,

E, = - L g% - ___L_. az¢
F ° ¢ 'L/f’ JUH opog
Fy = oY _ /L ©o°
? o e v Ogdg

Hy = J-“éfq (Bl“/g;)¢

Expanding these equations, we get the following fields in the two regions.

Ep = (° (zrbf“) swni eVFe® Region I
- 2> '
Ef’z:_gg’ T, () s é e /P Region 11
~/ Z
E¢/ = 3/“7{“42 /(n/<’-?-7;7:é3‘o) CoSs ’7?5 QJ'B* Region I
-/B8,2
E‘fsz = Q—K-P :7:,/ (‘%’\-’E r) C&S”# e JIB.Z Region II

Hp, = —Z}E:‘; (’237‘\19) A/n’(zg:é p) Cosnd cIFe® Region I

) , i .
Qf:., (2_}\7‘?) \7‘; (Z_T:\TB f:) Cos V\% N Region II

He» =

He, = '350 Ky (2"'5 )S}u né G-J/B%% Region I
He. = 1{)% T, (2Z8p) smn p e = Region II
Ha, = <Z7Tb) k, (EIE ) cosnd e IFET Region I

- B
‘// ® Region II

‘9“
Moo= 725, (BT, (G2 p) Cosnb ©
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Now we must equate the tangential fields at the boundary between the two

regions,
Eg  SETI(FEY) = e g/(Ty)
#a /_q/7 (%TE)"J; (Z}Pq - _ (me 7%)

When we divide these two equations, we get one of the equations for the
two separation constants.

mp
’:j% </%§lz In ('TX‘-é) - «-,L Zzzé %fn (ﬂ%31é<q)
TGy M A Gy

We must also have equal H¢ components at the boundary. which gives us a
second equation. '

b A/(va) (__E.q)

The propagation constant in both regions must also be equal which gives us
a third equation.

(211}:) = w’“(e,/q, _go/q,) — (QK_P)L

We have three equations but only two unknowns. These three equations can
only be satisfied simultaneously if we restrict the solution to n = O,
This eliminates one of the equations., The fields in the two regions become:

Ep =0

£p,= P k(Fhp) VIR

Ego= 22 T (5Fp) VT

,t/f, = L (ZHE) ¢, (277‘6{0) ex/'/g?“z

N‘olr ‘/5-’& <Z7TP)J" <'ZTFP )e—J‘/ge-Z
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ty = J%o (z«w) £ (2%(3) o Pe?

= 5, (20T () 7T

T v &/)(4‘ A

When we multiply the two equations by the radius, a, we obtain dimensionless
equations for the radial separation constants.

(59 = [cniom, — ) ~()

(p ) T (59 _ ) famvay k(T a)

— T e

/ Ao A /2
T (e ()

We can find the solution to these equations by plotting both of them as a
function of the separation constant in the dielectric and identifying the
solutions as the intersection of the two curves.

IM Modes

The TM mode solution can be found in a similiar manner as the TE mode. Just
like that case, we will only have a solution when n = 0., The TM mode
expansion differential expressions are

A R y
r - Jwe af; 32 r

_ _9d
Eg = o] %/¢ - ;%f?

Ee= e (PP

The scalar potential for the TM mode has the same form as the TE modes. When
we expand the potential, the following equations are obtained.

Ea, = - (2775) k, (277'5 )e”J}Be‘z‘

J @<

E-Z'(_- - . (%’7233{5;7{!‘)10) e—\/‘/ﬁ%%

JwE
ty, = - (BE) k' (o) VP
(31__7'_9) j-/(zrb )e“/‘/ge'z'
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These tangential fields must be equal at the boundary which gives us the
following equations.

g () k(Ta) = L (TE) T (2pa)
(39 K - (3D (W 2

If we divide these two equations, we get one of the equations for the separation

constants.
< (2”/? s (2775) J
VA (—f ) & (*"‘b«)

This is the same equation as the TE solution except for the interchange of_+(
and &€ . The other equation is obtained by equating the propagation constant
in both regions, This is the same equation as for the TE solution. We
have two equations which can be solved graphically.

These two modes have the same cut off frequency. Cut off is that frequency
below which the waves are no longer bound to the dielectric. We define
cut off as o = 0. The two equations for the separation constants become

277,0 _

'/"'l _ = 27 6//“/
€ Ac V ou,

o ~

277, / _
/\fa) k'(s) = 0O

The second equation is zero because the right side is multiplied by the
separation constant o . It is zero at the zeros of the Bessel function,

27T/7 qQ = Jfgp

Ac
A= ZT2 [y y
XOP éy({d

The waveguide has a finite cutoff frequency which is the same for both modes.

HYBRID MODES

We can find solutions to cylindrical open structures which do not have a low
frequency cutoff by using a wave which is neither TE nor TM to any of the
coordinates. Divide the fields into TE and TM modes to the Z axis,

398
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b = A2 (Bof) cosnp & VAT

Region I
I -w
¢€ = B, z?nel(ﬁlo,f’> .S/A/ngf eJﬁ%%

i

-/ B2
50"‘2 = ’4L Z:,Z()Bfnf> Cosnd e JlB& Region II
- <
Ve = B nez(/gfzf) smngp cvFe
Where

Z (PpP) is any linear combination of Bessel functions of order n which
satisfy the boundary conditions in each region.

We will find the fields by
expanding these potentials using the equations on pages 257 and 259,
3
Eﬁ = .&_%’g -+ d 9 SA“"

Eg = (B; /3,02 Z:"/(,szf’) +

31 2 2 z z
Ee® Gyt B B-P = Fr
) 2 m¢ -/ BaZ
E’&i N J W€, /B(O( A Zn (ﬁf’i 10) Cos nyﬁ QJ/S'Z
N 2

2 N - '}3*%
Hai = J—a:/j- Pr: B 20 (Boup) SWrb €7

2 R ML' -/ g&
% A Z, (Peif )) swn e 4

- / Q?Iﬁe L BWm
Polaspodsy  op

. ML‘ o ~J‘P%%
H“ - - (Ojj; B Znet(/Bf’if)) + A /Bﬁ Zn /(Pft'f»c sng €

These tangential fields must be equal at the boundary between the two regions.
Let us make the following substitutions before equating the fields.

Foo = (Y R = 20 (Bec?)

Rl= 28  Fae = 20 (Bid)
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When we equate the tangential fields, we have the following four equations.

2 z
él/Bf’/ A Fay = € PpaAFme = 0

My fB;;‘B' ;é‘ /A(/}BPL 2 ez. S

Ez

h

Hy

Epi AP g B o BBy R - By Fe = O

we, aq cuéa

/ 4 nB
;#ﬁ: ,4//ﬁ3fl'f;” - '4L_f$QL[3”Z + /B‘z ! /:3/ — éibzgé;? L, = 0

WM, 4 witpa  F

The coefficients, A, and B,, are nonzero only if the determinant of the

coefficients of the équatlons is zero, This gives us the first equation
in the separation constants.

z 2
GH.F%% F;1I 63/6?%.5;1- e o
o) @) /A4L/5%; F;U /A(//Z%QL };;Z

n / /
Pl £, _C% Friz Be Fei B Fez

/ / ,B,,n
Pe1 P P a e %4—: Fex

The solution to this determinant gives the following equation in the separation
constants.

/ / 2z
/ / 2 >
[/dr 'Eél + Fm }[érpmz + F'e| ] [/32'”! U, + (/(z.j -0
e - T2, -
Uy Fer Ui Fn, UL Fmz U Fe B U,
Where the following substitutions have been made.

_ 2ub 27
= A7& u, = 27F Pz _
U, 5 4 * L a Wak gy A

The second equation comes from equating the propagation constant in the two

regions.
27b _ 2 77
a9 «[(eote=1) = P
400
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DIELECTRIC ROD

The dielectric rod will support hybrid modes. The functions that are used
in the two regions are

Fe, = FM, = £, (3;‘771’ Jo) Outside the Rod  Region I
Foo = Fao =
€ ™7 J- ( f) Inside the Rod Region II

When we substitute these into the equation on page 400, we get the following
equation for the separation constants,

\7;/((,(7_) ! T (- /
_ & (4) || s (az)+ kn(u,)J

U, 7, (u,) U k, )|l UeTy, (us) Uy ko (o)
' kN
— [ﬁﬁai-ﬂ U;L-F‘xz ‘] =0
azus
ul:= %31@41 C(7~ = i%;l?ai f%% = J[7i;—;:j

U, = |. -
= [T (e o)~ ud

We can solve these equations graphically. A curve of the relative propaga-
tion constant is plotted on page 402, The dielectric rod guide has no low
frequency cutoff but from the graph we can see that the rod has little effect
on a passing wave if the radius is smaller than 0.15 wavelengths for a

dielectric sonstant of 2,

The dielectric rod is used to make an endfire traveling wave antenna. These
antennas are called polyrod antennas because they were first made with poly-
styrene, The rod protrudes from a waveguide feed. The waveguide TE.. mode

in circular guide will transform into the HE mode in the rod. The élelectrlc’
rod is tapered so that there will be little reflectlon of the wave at the end.

3\ —>

0.5
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The TE1 mode circular guide is tapered at the end into the dielectric as it
loads %he waveguide, The length of the taper is determined experimentally.
It will probably be necessary to insert obstacles in the waveguide to match
the transition and will limit the VSWR bandwidth to a few percent. A metal
pin may be put through the waveguide and dielectric rod to hold it in place
as long as the pin is orthogonal to the electric field in the waveguide.

When the wave emergés from the waveguide section, it is tightly bound to the
dielectric guide., The dielectric rod is gently tapered until the wave is
only loosely bound to the dielectric rod. When the end of the guide is
reached)there will only be a small reflection of the wave. This is an
inverted horn.

Since the dielectric rod is tapered, the relative propagation constant varies
down the rod. The far field can be found from the integral

L
c =O/E(”’) VAIGICRITE csl)q/E

where P(z) is the relative propagation constant function and E(z) is the field
level on the rod.

Design: Polyrod antenna 5 wavelengths long in a dielectric constant = 2.5 to
satisfy the Hansen and Woodyard criterion. Find the diameter. The required
relative propagation constant is given on page 349,

P = /+ 2L
2L

From the chart on page 402 this relative propagation constant corresponds to
a diameter of 0.428 wavelengths, The pattern response would be half-way
between the patterns on pages 355 and 356 for 4 and 6 wavelengths, The
diameter of the rod would be tapered to prevent reflections so that this

diameter would be the average which is weighted by the propagation constant
for each diameter,
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RADIAL TRANSMISSION LINES

When we solved the Helmholtz equation in circular cocrdinates on page 256, we
picked the direction of propagation to be in the Z direction. We can also
pick ¢ as the direction of propagation. The propagation constant in the
radial direction is related to the Z separation constant,

2 _ z 2
/5r =g e
We will have standing waves in the Z direction in the radial waveguide. The
scalar potential for these guides will be of the form

Y = cosng J Pe? H(Bee)
sw fe2 ) (#7(gpp)

TE Modes

We will expand the fields from the equations on page 257 using the scalar
potential given above. )
{

I A S
S F33) (W, (pof)
)/
E% = f%,c05n¢ CosfBa? H (ﬁ?fo
= A=) i (B )

Both these tangential electric fields must be zero at Z = 0 and Z = h. The
first condition restricts the solution to the sine term only. The second
boundary determines the Z separation constant,

S
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The scalar potential function for TE modes is given by

(:) m= 12,3, .,
Wmn = costh $) Sm(""”—){ ( (Bef) .
z)(lgﬂo) h=209,,2,,,,

The total fields are obtained from the equations on page 257
()
£ - F Sin(n@) S 2T 3) " (fe )
(
HQZ)CkaQ

(l)/
Eg = S c6s(nd) Sw( ) (Ber)

(z)/
(Be )
E. =0

(1)
_ , . (Bop)
‘Jr = ‘/ii?:( AT-‘C 05(n4) Cos -——-55)2( Pef
“Ceep)

- N T u,f"(

)
Hy (f%°§°)
+ (1)
- H
/42_= _’?f_ cas(nyS)S/u(_'%ﬂ %){ n (/Bﬂf) }
J (2)
s A Hy (Be)
Notice that the field is not transverse electric (TE) to the direction of
propagation, £ but to the Z axis, The wave impedance in the radial
direction is ‘given by
Q)
= Eb e Ky (Bepl
Y Pe y@ ¢ )
n Brr

(ﬂ/
z__ = ﬂ - “aJ (/%FJ
ARG

for negative traveling waves. These impedances are complex conjugates of each
other,
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Since the constant, m, must be greater than zero, the waves have a cutoff
frequency. The cutoff wavelength is given by

/4c h < -7;r

TM Modes

We can find solutions that are transverse magnetic to the Z coordinate by
using the equations on page 259 to expand the fields.,

1)
PP cosnd) ~swfez | [ o Eer)

f '
JuE os B | | 49 (p.e)
—Sin Be 2 ,_,rg')
E4 = :Q& Smi(n é) (IBHO)
Jwéld cos 2 #'sz}(/‘?f’f’)

Both these tangential fields must be zero at Z = 0 and Z = h which establishes
the function of the scalar potential and the separation constant.

mir

18&'"‘7,—

™ mIT (I)(/3l°f’)
Yo = Cos (nd) cos("T2)

Ha''CBp )

In this case we can have m = 0 which means that the wave does not depend on the

Z coordinate, These modes are used with the cylindrical corrugated surfaces
becuase they usually have small heights between the corrugations. The fields

are found from the equations on page 259.
(l)/< )
Hn le(O

= -mir oS N w( Ml
r Jé% cosnd S(5T) 2 (Bef)

5 jZGf swng s (8 3) [ ' o)
(L

(pfr)
VI

)
E, = jé% Coesng Cos ("':’T ) Hn (ﬁff)
Ha (B )

Eg

Fundamentals of Antenna Design by Thortid8 Mill igan Copyright 1981



Chapeter 10 Endfire Antennas )
Ha'(

U = =N swngd Cos (ﬁhlrz) ’(' /5fP>

r f Hnl)<ﬁf f’)

N IS
= ot o) O
n f

Notice that these fields are transverse magnetic to the Z axis and not the
radial direction of propagation,

T™ . Modes
On

For corrugated structures we will only need the TM, solutions because the
distance between the corrugations is much less than a half wavelength required
for the first order m mode. The fields reduce to

Ef::o Eﬁ:O

Eo= B Cos nd Ha' (B ¢l
J WE H,f") (/5 F)

#ﬁo = TFgL Simwng ngh{0<;§fJ
H, ) (/8(3)

H¢ = '/5 cos né H'fl)/(ﬁf’)
H (pe)

The radial prm pagation constant is now the free space propagation constant.
Take the case n = 0, which corresponds to the axially symmetrical fields of

the TMO circular waveguide. It also corresponds to a TEM mode between the
plates %raveling in the radial direction. Consider the electric field.

2 Q) )
& =/7§>2 (<, H, (Bp) + CH, (,Bf))

Suppose we have a short at radius a; and an outer radius of ay. We have the
additional boundary condition: Ez(al) = 0.

o= —H (B
A/o(z’ (ﬁq)

The electric field becomes
b ‘ ( @ .
6= £ a4, (e 1. ee) — H, () H(a)
JQJ

407
Fundamentals of Antenna Design by Thomas Milligan Copyright 1981



Chapeter 10 Endfire Antennas

The magnetic field equation becomes

)

), () )s
Yy =~ A, (X Bp) He ) = Ha (Be) He'(Ba)
The radial impedance looking into the guide is given by
z = B2 _ /B z‘/o(')(/?q,_) IL/a(l)(/Bq:) - HBa, )//o(')(,Bq,)

Y
¢ K (pa) #'Ba) - H(pa) 1 (5 )

We can use the following identities to reduce this equation.
(1) , ]
Htx) = Tp () +j M, ()
B ) = To G =) MnX)

This will reduce the impedance equation so that it involves Bessel and Neumann
functions when expanded. The result of the expansion is given below.

Z = ! L O ()BQI) MO ( 4') - a 684,) A/o ( ql)
e =Y 7 v i v £
T B a) M (Ba,) —T;(Ba,) M, (Ba)

Since we knew that we would only be using the radial waveguide as a cavity, we
could expand the fields as standing waves in P as well,

E, = fg (D, TsCBp) + 2. Mo (BE)

/.
Hy= ~B (BTGB + 2 (Be)
When we apply the boundary condition: Ez = 0 at 19 = a;, we get the relation

DL = — Dl o (/Bql.)
My (Ba,)

.. . . . / ——
We can also use the Bessel function relationships: 7, = —.J, ) AQ/:= N,

E, = C’?’;/él, (7 Be) Mo (Pa,) —Ts( B4,) Mo (/3ﬁ))

Hé = /8/4, (J: (/Bf) A/o(/squ - :7;(/8'71) N, (/9(0}/
The radially directed wave impedance becomes

T2 ) Mo (Be) — To(Be) M. GB)
T Bee) Mo(Ba,) ~ Tolpa) (g ar)
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CORRUGATED CYLINDRICAL CONDUCTOR

The circular corrugated conductor can be treated in the same manner as the
plane corrugated conductor. The impedance at the interface must be equal,

In the figure below the @ component of the electric field must be zero., We
can pick the TM mode solution given above for the dielectric rod for a solution.

a,

[ 1
L[ T

The fields outside the corrugations are given by

- (S k()

/ S PE A

#p = A () k6 (Bke) e

The impedance looking into the corrugated structure to support this wave is
given by

B

iy :
Z., = % _ t—i- EZé = ‘7 a7b) _ -
r /ﬂ; Jwe, \ A VGZ;__<<j¥f) “_V/'?n’é;

This is the same as the plane corrugated conductor. The corrugated surface
is a series of short circuited radial transmission lines. The surface must

be inductive to support the surface wave. The impedance of the radial trans-
mission line choke is

To (B2) Mo Ba) - To(Ba,) Mo (B4,)
I, (Ba) No(Ba,) - T, (Ba,) N, (Ba,)
Therefore we can find the relative propagation constant given the two radii., A

curve of the relative propagation constant for various outer radii is plotted
on page 410,

1%70 =
The mode must be fed by an axially symmetrical mode such as the TM.. circular

waveguide mode or a TEM coaxial mode. 01
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HE11 MODE ON CORRUGATED CYLINDRICAL CONDUCTOR

We will derive a hybrid mode on the corrugated cylindrical conductor. The
assumptions are that there are many corrugations per wavelength along the
conductor and that the corrugations will short out any @ component of the
electric field on the surface of the corrugations. The fields are derived
from a sum of Z directed electric and magnetic vector potentials.,

‘06:

P = Ak, (2 p) cosmbp < P2

217h
A

The @ component of the electric field is a sum of terms.
E 4 = &¢€ / 3?‘%4
% +
afD JwWEp Of 0z
Expanding this expression we get

(6 FH R L () s IR

This electric field will be zero at p =
the magnitudes of the scalar potentials.

, = ‘/4//5;0( ) kr (2a,)
weq, b k (l__q)

We need to find the impedance of the wave looking into the corrugated surface.

This requires the Z component of the electric field and the @ component
of the magnetic field.

- (%lJ,BI)/”m - (z/\zé)L

a, which gives us a relation between

£y, = —A (iy_—_g,) k( F)casngbe'/}g*%

\/O)é

gy = L S ok
JuMp g dz <9f’

= - (—ﬁ——g' il Kn (%%F) */’/(3:7\&) kn,(%@?)) Cosng ek
L p

When we substitute in the restriction on the @ component of the electric field,
the @ component of the magnetic field becomes
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L R k (R_Zéql)
Hg = A4 Pe 1 4 ) e 21 _ 2l y 1y 2mp - B
? ! (wly 4{0 b 144 (% q, /(4(,\ ‘O> A £ ( A ‘O)) Cosnd e

A

The impedance looking into the corrugations to support this wave will be the
P component of the wave impedance.

2 = E=2
P Hyg
-/
‘Z _ J'_Z:Z (Z/‘%ré) 7-/(’\ (_2./‘_7.@ Q"')
=

/i; n<* ;i_> kﬂl<%§é‘71)

f% (Ezzfqu) - ézz;quég?é‘7z)
/81 Q;— _7h z(’,{(ﬂq) A A
P 2

With a few substitutions this expression reduces to
' 2776 z 2rb /¢
z,= /18 (FEa) by (a) k) (3 a)

) R (Fea,) - (Sa) k) (2 o,)

The corrugated surface is a series of short circuited radial transmission lines,
The wave impedance of the radial line choke transmission line is

2, =7 T5 (Ba,) No (82) - Ts (8%;) Mo (B4,)
P70 G Huea) - T (s W, (52s)
Equating these two equations for the radial wave impedance, we obtain the

characteristic equation of this mode which can be solved for the attenuation
constant.

b (328 )k, () £/ 2,

() K (Rtkg,) - (?;’(—baz)lk.'?z‘@‘ﬁ)

A

JZCBQ,)/% gBQz) - o (,qu) o 9841)
T B)MBa,) -7;(Ba,) N, (B2.)

On pages 414 and 415 are curves of the relative propagation constant of the
corrugated rod excited in the HE. . hybrid mode. These curves are similiar
to the curves on pages 410 and 411. The propagation constant increases
slower than the TMO case which means this mode requires deeper slots to
achieve the same re}ative propagation constant. The second plot shows the
effect of varying the ratio of the thickness of the corrugations to the gaps.
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Chapeter 10 Endfire Antennas

An antenna using a corrugated rod has been called a cigar antenna when excited
in the HE,, hybrid mode (linear polarization). We have assumed that the
corrugations are closely spaced in wavelengths which allowed a solution by
matching the impedance at the edges of the corrugationms. This can be done

if we assume that the @ component of the electric field is zero at the
corrugations; the same assumption is made for corrugated horms. If there

is a.. § component of the electric field at the corrugation edges, then it

must be supported by a TE1 mode in the radial cavities. This mode is
cutoff, The antenna has %een made with the gaps up to but less than a

half wavelength. As long as the gaps are less than a half wavelength, the
structure will be a slow wave structure. In general as the gap size grows,
we can expect that the relative propagation constant will approach one, This
effect can be counteracted by increasing the slot depth.

A method of solving the problem of widely spaced disks on the cigar antenna
is to use a periodic structures analysis, In this analysis the electric

e T, —B

field is expanded in terms of space harmonics 6f the periodic length, L.
o
: . (21N
= w4 z . (——"):&
= -00

An electric field is assumed in the gaps and the coefficients of the infinite
series are found by using a Fourier series approach. The characteristic
equation for the separation constant would include the infinite series in the
space harmonics., By assuming the corrugations are close, we have set a = 0
in the infinite series for all n., It is suggested that an empirical

approach will yield a design for widely spaced disks when we start with the
design curves realizing that the depth of the slots will have to be increased,

FEEDING CYLINDRICAL SLOW WAVE STRUCTURES

These structures may be fed by mounting them in front of a horn which is excited
in the proper mode to excite the slow wave cylinder, The TE 1 mode in

circular waveguide or the TE, mode in rectangular waveguide %111 excite the

HE,. hybrid mode on the cylinder. A flared coax where the center conductor

is connected to the corrugated rod will excite the TMO1 mode.

In these cases the total pattern will be a combination of the traveling wave
endfire structure and the fields of the horn aperture which are not bound to
the slow wave. The efficiency of exciting the slow wave will be a function
of the aperture size and the external attenuation constant. For narrow
bandwidth.. applications the structure can be excited with a feed dipole or
resonant loop with a reflector. In this case the slow wave structure becomes
the directors of a Yagi antenna,
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HELICAL ANTENNA

The helical antenna was developed by J. D. Kraus in the late 1940's, It is
an endfire antenna when the circumference of the antenna is around one
wavelength with circular polarization. H. A, Wheeler in 1947 published
results for helical antennas of small diameter called the normal mode which
also gives circular polarization over a limited frequency range. The axial
mode helical antenna (endfire) gives good pattern responses over the range

of cicumferences from about .78 wavelengths to about 1.33 wavelengths for
helices of a few turns (less than 15). The antenna will work over a smaller
bandwidth for more turns, Since the antenna will work over a 1.7 to 1
bandwidth and is able to give very good circularity, it has become a very
useful antenna.

The figure above is that of a right hand helix showing some of the parameters
of a helical antemna. We will use the circumference: C = 77 D, The length
of each turn is given by the following diagram. o is the pitch angle; S

is the spacing between turns; L is the length of the wire; and D is the
diameter.

C=1D
The length of the turn is given by L= (/st*¢+ ¢+ = TD/cos
HELICAL MODES
The antenna can be understood by considering the modes of the helical trans-
mission line. When the diameter of the helix is small comparied to a

wavelength, the wave traveling on the wire of the helix is called the T
mode. It travels along the wire at about the free space velocity. °
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S EEEEFEEEL KA

+ - + -

The equal phase points of the waves occur on separate turns. In this mode

the helix radiates in the normal mode. The normal mode radiates at 90 degrees
from the axis of the helix, This mode is the primary mode used in the
traveling wave tube to couple energy from an electron beam, Energy is

coupled into the wave from the beam when the velocity of the wave in the

axial direction is close to the electron drifit velocity. Since the wave
travels along the wire at about the free space, the axial velocity of the

wave is the velocity of the wave on the wire times the sine of the pitch of the
helix. This is a slow wave structure in the axial direction.

The second mode occurs when the circumference of the helix approaches one
wavelength, Tl mode., This mode will have a distribution e_/;é or 6’7/'75

+

O ™

—

+ + + +

The whole variation of phase occurs on every turn., The axial mode or end-

fire mode is due to this mode. The velocity of the wave on the wire

reduces to less than the free space velocity and increases with circumfer-

ence, The velocity increases in a fashion so that the phase between turns
closely approximates the Hansen and Woodyard criterion for increased directivity
from an endfire array.

+,2
The third mode on the helix will have an €~V ' variation around the helix
which we can see best from the end view of the helix., The velocity of this

+ I

wave along the wire of the helix is even slower than the T. mode, less than
half for a circumference of one wavelength, As the diameter of the helix
increases the energy is coupled into the higher order modes.

In general we can express any current distribution on the helix as a linear
combination of the general modes

ei:/'mé
where m is an integer. Using these modes we can explain the radiation from
a helical antenna.
NORMAL MODE
When the helix is small, the antenna looks like a combination of loops with

short linear elements between them. The pattern of the small loop and the
short dipole are the same. There is a null on the axis of the helix. Since

418
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the loop and the linear elements have different polarizations, it is possible
to pick a combination of sizes to give circular polarization in the normal
direction, This is true when the spacing and diameter are related by

7P = /25/\

As we can see, this is a frequency dependent relationship. This is inherently
a narrow bandwidth antenna. The current on the helix is a standing wave
pattern of two traveling waves in the T, mode. We can expect an input
impedance variation similiar to the dipo?e or loop. The normal mode helix
has failed to become a practical antenna.

AXTAL, MODE

The axial mode is radiation from the T, mode on the helix. There are components
of the other modes on the helix which must be present to satisfy the boundary
conditions, The presence of these modes can be seen in the patterns. This
antenna is part of the general class of slow wave endfire amnt ennas., Not only

is the current on the wire a slow wave but the diameter is picked so that

the wave is a slow wave in the axial direction. It appears that the slow

wave naturally fits the Hansen and Woodyard criterion for increased direct-
ivity from an endfire antenna over a large variation of parameters.

Instead of analyzing the structure as a continuous endfire array, it is conven-
ient to consider the antemna as a discrete array. Each element is one turn
of the helix. The antenna is the following linear array.

e S o, 8 8 8

Where S is the spacing between turns, We will analyze the array of isotropic
elements and then multiply by the pattern of a single element to obtain the
pattern of the helical wire antenmna., All this assumes that the T. mode is
uniform along the helix which appears to be a good assumption. From page 105
or 348 the pattern of the isotropic array is given by

E=g, SWWNYe)
V/2.

where ¢ = FS Cos © + & ; S is the spacing between turns, O is the angle from
the axis of the helix, % is the equal phase shift between elements, and N is
the number of turns. This expression is limited to integer number of turns
but we would not expect the pattern to change much  for non integer number of
turns. from near by patterns of integer number of turns.

For circumferences from 0,78 wavelengths to about 1,33 wavelengths the antenna

will satisfy the Hansen and Woodyard criterion for a few turns (less than about
2 wavelengths long). Based on these experimental results with helices, we can

find the wave velocity on the wire. The distance along the wire between turns

is found from the diagram on page 417,
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Since the circumference is about one wavelength, the phase change on one
turn will exceed 27 . The phase shift in the axial direction is determined
by the Hansen and Woodyard criterion.

-.g=/85+/_v71‘

Since we are going around the wire, we will add 27 to this to get the phase
along the wire

BpL = Bs +277'+--L-r

PLA = SA + /1 + 4 ;

Where P is the relative pmw pagation constant.

PG feosx = G Cav(x) + (2nv+1) /2N

P= siwx + ((21\/+/)/2Al> Cosx /c,

C » is the circumference in wavelengths, As N, the number of turns, becomes
large, P approaches a constant which is the relative propagation constant of
the infinitely long helix, Because P is not the same as the infinite helix
in the T, mode, there must be a combination of modes which increases P for
shorter ﬁelices. When the circumference of the helix increases, more energy
is coupled into the T, mode., This limits the upper end of the range of allow-
able values of C , . As the number of turns is increased, the upper limit
shrinks toward the lower limit, The lower end is established by the smallest
circumference which will support the T1 mode,

The polarization of the helix pattern is determined by the pattern of a single
turn; the isotropic array does not determine anything about polarization.
Consider the T1 mode on a. one wavelength in circumference loop when looking
from above.

r

The traveling current wave is -/ BPEq
jf;cf-//g %

Since the loop is approximately one wavelength around, we see a current wave
rotating on the loop at the rotation rate of the radian frequency. When we
discussed a circularly polarized wave, we found that the wave polarization
rotated with the radian frequency. From these statements we can see that

the T. mode on the helix radiates a circularly polarized wave since the current
rotatés its direction at the radian frequency. The sense of polarization is
the same as the screw of the helix., When looking down on a helix which is
transmitting, the polarization is right hand circular if the traveling wave
current is traveling counter clockwise on the helix.
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I1f the helical wire follows the increased directivity criterion, then the
boresight axial ratio will decrease with increasing number of turns, This
assumes that there is only the T1 mode on the helix, The axial ratio is
given by

Axial Ratio = (2 N+ 1)/2 N

When the velocity along the wire varies away from the increased directivity
criterion, then the axial ratio will increase for increased P. Axial ratio
equals one (0 dB) for P = 1, The axial ratio will increase when the T, mode
is generated, This mode radiates a four lobed pattern which disturbs tﬁe
pattern polarization on boresight. If the helix has more than 10 turns, the
boresight axial ratio will depend on the feed region and the tip region,

For an example consider a 5 turn helix with a circumference of 0.9 wavelengths
and a pitch angle of 13 degrees. On page 422 is the pattern of a single turn
of the helical antenna. The solid curve is the right hand circular polarizas
tion component and the dashed is the left hand component. Note that the

cross polarization component is down by about 26.3 dB from the co-polarization
componehit at boresight. The pattern of the full 5 turn helix is plotted on
page 423, 1t has the same boresight cross polarization response as the single
turn. We can compare this pattern to the pattern on page 424 of a traveling
wave endfire antenna the same length and axial relative propagation constant.
The pattern response of the single turn has reduced the sidelobe level and

the beamwidth compared to the isotropic element pattern., It would be a more
direct comparison of pattern multiplication if the helix turn did not repre-
sent such a large proportion of the full length of the helix.

The directivity of the helical wire antenna can be found by integrating the
pattern. In order to properly integrate the pattern, the energy in both

the co-pol. and cross pol. components must be added together, When this is
done a composite pattern which is suitable for directivity integrations can
be found. Using this pattern the helical wire antenna can be treated as a
continuous endfire antenna., It was found that the directivity is proportion-
al to the axial length of the antenna and only slightly on the circumference
of the antenna for those which will support primarily the T, mode only. A
curve of the directivity versus length is plotted on page 425. This curve
shows that it requires a very long helix to obtain large gains which is true
of all traveling wave endfire antennas. The very long helices require
special considerations to get a reasonable design and achieve the predicted
directivities., Similiarly a curve of the beamwidth versus length is plotted
on page 426, This curve is based on the composite pattern of the right and
left hand components and will predict slightly larger beamwidths for short
helices.

Feeding a Helical Antenna
The axial mode helical wire antenna is usually fed from the center pin of a
connector mounted to a ground plane. The pattern does not depend on the

ground plane to achieve a good F/B. The pattern on page 423 does not
include effects of a ground plane. The ground plane is required to achieve
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Single Turn of a Helical Wire Antenna of 5 Turns
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5 Turn Helical Wire Antenna in Axial Mode

CIRCUMFERENCE = 0.9 PITCH - 13
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the transition between the coaxial line and the helix. It has been found
that a ground plane a half wavelength in diameter is sufficient to achieve

a good transition, The ground plane will reduce the backlobe of the antenna,
but it can also effect the boresight axial ratio. Kraus gives the following
formula for the impedance of the helix.

R = 141 C/A

This value is changed in the presence of the ground plane and the manner of
feeding, It is usually less than the predicted value. Some designers have
tapered the last turn of the helix down close to the ground plane so that the
wire and ground plane will be a tapered transformer to better match the
antenna.

Another method of feeding the helix is to use a helical coax, The coax is
wound in a helix and the outer shield of the coax is split and tapered down
similiar to the split tapered balun, pp. 149, to transform into the helical
wire antenna.. This reduces the axial ratio because modes other than the Tl
mode are not generated at the feed,

The helical antenna may be grounded and fed with a gamma match as well, A
feed like this will reduce the possible bandwidth but in some applications it
is desireable to have a grounded antenna, This will prevent static charge
buildup and reduce the effects of lightning strokes nearby.

It is necessary to have modes other than the T, mode to satisfy the boundary
conditions at the input and the end of the helix., The currents on the helix
will be approximately as shown below.

[\Jo Ti —>
<
- T /T
. < .

At the feed the T, mode will be generated as well as the T, mode. The energy
in this mode will be coupled into the T, mode in a few turins, The T, mode
will radiate normal to the helix and give a larger pattern response around

® = 90 degrees., At the end of the antenna the current in the T1 mode will

be coupled into the T, and T2 with some energy being reflected In the T

mode. The energy in ghe T, mode and the reflected T, mode energy can bé
reduced by tapering slight%y the last few turns of t%e helix, This will
improve the boresight axial ratio since the reflected T1 mode will radiate

in the opposite sense of circular polarization,

427
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LONG HELICAL ANTENNAS

The helical antenna is usually limited in length to less than 2 wavelengths for

wideband designs. As long as the antenna is less than this
have good pattern responses over the 1,7:1 bandwidth,
where it would be nice to have higher gains and the circular
the helix. It appears that there is no inherent limitation

the helix.

length, it will

There are applications

polarization of
on the length of

But to achieve higher gains it is necessary to limit the bandwidth.

The low frequency limitation on the bandwidth is determined by the smallest

diameter needed to support the T, mode on an infinite helix.
of the band is determined by the coupling of the energy into
the number of turns is increased, the upper bound approaches

In order to test these ideas about the long helix an antenna

The upper end
the T, mode., When
the lower bound.

was built with the

Fundamentals of Antenna Design

following parameters.

Diameter: 0.68 inches

No. of Turns: 50

Pitch 14°

Frequency 5 GHz C7\ = 0.9

The antenna was wound on a Lexan tube to give it support which we will see had
a slight effect on the velocity of the wave on the wire. This antenna was
about 10 wavelengths long which from the graph on page 425 gives an estimated
directivity of 19 dB. On page 429 is a pattern of the theoretical pattern

of the helix when it is assumed that the relative propagation constant on the
wire is that given for increased directivity., The 3 dB beamwidth is about 18°
which compares well with the graph of beamwidth on page 426. The helix was
mounted on a ground plane and fed directly from a coax connector center pin,

When this antenna was measured, it appeared that the common wisdom about long
helices was correct. It has been stated that it is not possible to build
long helical wire antennas to achieve high directivities, The pattern of the
antenna as built is on.. page 430. This pattern was taken with a rotating
linear source so that the axial ratio and the pattern response can be obtained
from the same graph. The antenna has a somewhat smaller beamwidth than the
predicted pattern, but the boresight axial 'ratio is quite good. The first
sidelobe is about 4 dB higher and is closer to boresight by a few degrees than
the theoretical pattern. Finally the other sidelobes do not continue to
diminish in amplitude as the theoretical pattern response does diminish.
is quite a bit of energy in these sidelobes around 0 = 90 degrees., This
pattern does not have the predicted directivity.

There

Since the antenna had close to the predicted beamwidth and good boresight axial
ratio, it was felt that the antenna was radiating in the T, mode. The bad
response could be due to the T, mode that is generated at The transition from
the coax to the helix, A metgod of testing this idea was to place a circular
cup around the first few turns to limit the radiation of the T, mode which
would die away after these few turms, This cup improved the gar out sidelobe
response without any effect on the boresight response. It was shielding the
radiation from the T0 mode on the first few turns.

428
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After some experimentation, the following circular cup at the base on the
helix covering the first few turns was found to give the best pattern response

at 5 GHz.

The pattern response of the antenna is given on page 432 with the above cup at
the base of the helix, The far out sidelobe response has improved greatly
from the initial response of the antenna (pp. 430), The directivity was
measured.. by integrating the pattern and accounting for the energy in both

the right hand and left hand circular components, The directivity is 18.8 dB.

The antenna still has higher than predicted sidelobes and slightly narrower
beamwidth. It is felt that the dielectric tube that the helix was supported
on may have changed the velocity of the wave on the wire. On page 433 is

a pattern of the 50 turn helical antenna where the relative proagation
constant has been increased by 0.2%. The sidelobes have increased by about
2,5 dB from the previous theoretical pattern and the beamwidth has narrowed
slightly. Although the dielectric tube has changed the velocity of the wave
on the wire by only a very little, the pattern sidelobes have changed rapidly.
It would appear from this pattern that the relative propagation constant has
changed by about 0.25% by the presence of the dielectric tube, On a shorter
helical antenna this small change in the wave velocity would not be detected.

The bandwidth of the antenna has decreased to about 10%, but this is what is
expected for long helical antennas. The pattern degrades rapidly as the
frequency is increased and gradually for decreasing frequencies. The antenna
works best at 5 GHz because the circular cup was adjusted to give the best
pattern response at that frequency.

The conclusion is that long helical wire antennas can be built, but the band-
width will be limited. The second point is that the bandwidth shrinks down
to the low frequency limit which says the circumference should be 0.8 to

0.9 wavelengths.

431
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50 Turn Helical Wire Antenna with Circular Cup at the Base

Diameter 0,68 inches Pitch angle 14° 5 GHz
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