Chapter 11 Frequency Independent Antennas

FREQUENCY INDEPENDENT ANTENNAS

The frequency independent antennas are based on the principle of frequency
scaling used in model measurements. The pattern and polarization of an
antenna do not change if the dimensions are scaled with the same factor as

the wavelength. The losses do not scale properly but the conductivity of

the metals that antennas are made of is very high and the dielectric loss tan-
gents are small. A change of scale is permissible with small losses. Of
course, scaling an antenna to a higher frequency presents problems in
fabrication since it is difficult to scale tolerances, and wall thicknesses
become too thin.

In order to have a frequency independent antenna we need structures which can
be their own scale models, One solution is to have an antenna which is
specified only in terms of angles (Rumsey 1955). This solution leads to the
class of spiral antennas which are continuously scaled structures. The
second solution is to include in the antenna scale model parts for which the
antenna is scaled exactly. Between these frequencies the antenna is not
exactly scaled and is not frequency independent. The pattern response will
ripple with frequency. The scaling on these antennas will be log periodic.
We have two types of scaling for frequency independent antennas: continuous
and log periodic. This is only the first requirement for a successful
antenna.

The structures given above have no ends. They must scale down to an infinit-
esimal size and grow without bound. Note that even an infinite log periodical-
ly scaled antenna will have a frequency ripple between scalings. A practical
antenna must have a finite size which gives us another requirement on the
antenna. The current must decay before the end of the antenna is reached or
the reflected wave will change the pattern shape and polarization. The
antennas are usually fed from the high frequency or small end. This portion

of the antenna which does not radiate must be a transmission line for the

low frequency currents before the active or radiating region is reached.

The design of these antennas is determined in two parts. The pattern
characteristics determine the scaling constant of log periodic antennas or

the wrap rate of the spirals. The actual size is determined by upper and

lower truncation constants which determine how far the structure must be
continued beyond the resonant portions of the antenna until the currents have
been reduced sufficiently to be able to truncate the structure without degrading
the pattern significantly. The truncation constants are nebulous since some
applications can use antennas with a large amount of pattern distortion.

A frequency independent antenna has the same beamwidth and directivity when
the frequency is increased. Usually there is a rotation of the beamwidth
angle with a change in frequency as in a spiral antenna, but once this is
accounted for the antenna is frequency independent. Most antennas, like
horns, have increasing directivity and decreasing beamwidths with increasing
frequency. This is because the physical aperture remains constant and the
wavelength decreases. The gain (directivity) is related to the aperture by
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Chapter 11 Frequency Independent Antennas

But for structures defined only by angles, this is not the case. The
directivity remains constant with increasing frequency. This can happen
only if the effective area decreases as the square of the wavelength as the
frequency is increased. The currents on the structure must be attenuated
rapidly after the active region is reached and the area of the active region
must be proportional to the square of wavelength. Antennas defined by angles
will satisfy the truncation requirement for a practical frequency independent
structure since the currents are highly attenuated after an active region
which shrinks with increasing frequency. Any antenna which will satisfy the
frequency independence of its beamwidths and directivity must have a limited
active region followed by an attenuated current region beyond the active
region,

The pattern is also effected by the truncation requirement. The pattern is
proportional to the magnetic field. If the magnetic field was radiated in
the direction of the antenna structure, then the tangential magnetic field
would excite currents on the structure. This would not satisfy the trun-
cation principle because there would be currents on the structure beyond the
active region. The pattern will be zero in the directions of the infinite
structure for increasing dimensions. In the case of a planer spiral the
fields are zero in the direction of the spiral if it is frequency independent
(defined by angles only). The conical spiral must radiate towards the top
of the cone to satisfy the truncation requirement. It is a backfire antenna.
Similiarly the log periodic dipole antenna will be a backfire antenna and
radiate in the direction of the small end of the antenna.

We will approach these antennas in an historical order., The equiangular
spiral, a true frequency independent antenna, was an out growth of the
Archimedes spiral which is broadband but not frequency independent. We will
cover this archimedian spiral first.

The Archimedes spiral was developed at Wright Air Development Center by E, M.
Turner during 1953 and 1954. This antenna is not a true frequency independ-
ent antenna since it does not meet the truncation requirement. The currents
do not decrease sufficiently after the active region so that the spiral may
be truncated without effecting the pattern response. An archemedian spiral
increases uniformly with increasing angle.

=r +
r=r +a 1)

Where r 1is the initial radius and a 1is the growth rate. This antenna
does not®scale to an infinitesimal size which is one of the requirements of
a frequency independent antenna. Since the current does not decrease
sufficiently after the active region, the last few turns must be loaded to
prevent reflections. This antenna is made as circular spirals or square
spirals as shown below.
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Chapter 11 Frequency Independent Antennas

The second arm of the spiral is shown dashed so that it is easier to distin-
quish between the windings. It too is a solid line of copper. The antenna
is usually made complementary; the width of the line equals the spacings
between the lines. From this we know that the input impedance will be close
to the impedance of an infinite complementary structure: 189 ohms.

The center of the spiral is fed from a balanced line. When the spiral starts,
the currents on the turns are nearly equal and opposite. The combination of
the fields from these currents will cancel in the far field like the fields
from a two wire transmission line. The currents are separated as the spiral
grows from the feed. When the circumference of the turns approach one wave-
length, then the currents which are out of phase at P and Q in the diagram
above become in phase at points P and P'. The current travels around half
the turn from Q to P' and decreases in phase from 180 to 00. Now the
currents are in phase and the far field from the currents will add. 1t
appears that the radiation is from a traveling wave on a loop one wavelength
in circumference.

The spiral is similiar to the axial mode helical antenna which is about one
wavelength in circumference. The traveling wave will produce a right hand
circular radiation above the plane of the spiral as shown. The spiral
radiates a left hand circular polarized wave below. From symmetry we can
see that the pattern shape below the spiral will be the same as above, unlike
the helical antenna which has a progressive wave traveling in the Z direction.
The helical antenna has a pattern for a single turn on page 422 which has
opposite sense polarization on the two sides but a 4 dB front.to back ratio.
On page 437 is a pattern of a flat loop one wavelength in circumference with

. a traveling wave on it. The patterns of the two polarizations are equal and
opposite. This is only approximately the pattern of the spiral because the
spiral:increasing has been ignored and the effect from nearby turns has been
ignored.

The current on the flat spiral can be described by using fundamental modes as
was done for the helical antenna. The general mode will be

o2im$

where m is an integer. The radiation from the spiral is the m = 1 mode
(T.,) which is excited on the turns which are near one wavelength in circum-
ference. On the turns near the feed, the currents are in the T, mode which
is a transmission line mode that couples into the next higher moge as the
diameter of the spiral increases. In the analysis of the spiral as a trans-
mission line given above the effects of mutual coupling between the turns

was ignored, The coupling will have the effect of changing the velocity

of the currents on the windings. A group of windings near one wavelength

in circumference will all be excited in the T. mode where the velocity on

the wires will adjust to the circumference. This is similiar to the effect
on the helical antenna. When the spiral continues to larger diameters, . the
energy is coupled into higher order modes (T, and T3). These modes are highly
attenuated and tend to cancel each other. %ecause the spiral increases
uniformly, the cancellation is quite slow and there will still be significant
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Chapter 11 Frequency Independent Antennas

currents when the end of the spiral is reached. I1f the end turns are not
loaded then the energy is reflected and travels.back in towards the center

of the spiral. When the currents reach the portion of the spiral near

one wavelength in circumference, the energy is radiated from the T, mode.

This wave will be in the opposite sense of circular polarization and increases
the boresight axial ratio.

The size of the antenna is determined by the lowest operating frequency. The
circumference must be at least one wavelength to 1.25 wavelengths at the

outer edge. Beyond that the next few turns should be terminated in a lossy
material to absorb the remaining energy and retain a good axial ratio on
boresight. Usually the antenna is mounted over a cavity to prevent the
opposite sense polarization from radiating. If the spiral is placed a
quarterwave over a ground plane, the field reflected off the ground plane

will change the sense of polarization and add in phase with the directly
radiated fields on the open side. The wave travels a half wavelength going
from the spiral and back. Upon reflection the wave gains 180°(a phase reversal)
to satisfy the boundary conditions on the horizontally polarized wave which
gives a total phase shift of 360°,

The antenna must be fed from a balun or the in phase component of the unbalanced
mode will reach a point on the spiral where the fields: from the currents on the
two windings will add in phase (two wavelengths in circumference) and squint

the beam. The in-phase component will also radiate from the first few turns.
Most of the problems with the antenna is finding a suitable balun and phasing
the reflections from the cavity to achieve good axial ratio response.

EQUIANGULAR SPIRAL

Rumsey has argued that if the shape of an antenna is determined entirely by
angles, its performance will be independent of frequency because it will-be
invariant to a change of scale. There is no specified length. One example
he gives is the biconical antenna which is specified only by angles but it
fails to satisfy the truncation principle. The antenna must be infinitely
long to be truely frequency independent. The current fails to decrease along
the length of the antenna. The most likely antenna is the equiangular spiral
which is specified only be angles.

The equiangular spiral was the first practical frequency independent antenna.
The spiral is drawn on page 439. It is defined by the equation

r =r ea¢
(o]

The constant r  can be related to an angle by

The constant a is related to the angle X , the wrap angle, as shown on the
diagram of the spiral.

1/ Tan o

a
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Two Arm Equiangular Spiral

Complementary Conductors
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Chapter 11 Frequency Independent Antennas

The thickness of the spiral arms is also expressed in terms of angles. The
spiral is rotated by an angle § to determine the other edge of the spiral.

2 +8&)

[0}

These two equations define one arm of the equiangular spiral. The other arm of
the spiral is defined by the equations
ea(¢ + 77)

r and

o}

c ea(ﬂ + 7 + &)
(o]

For the antenna shownl'on page 439, the angle & is T7/2 which will give a
self complementary antenna. We know that the impedance will be close to
189 from the Babinet-Booker principle. A drawing of a non complementary
spiral is given on page 441; this antenna will have a higher input impedance
than the spiral drawn on page 439.

The practical antenna must be truncated. The length of one of the arms can
be found by integrating the equation for arc length. The result is

L= (r-rn)[1+ tawx = (r=r)[1 + I./a?

The antennas drawn on pages 439 and 441 will radiate a right hand circularly
polarized wave above the spiral and a left hand wave below. From symmetry
we can see that the patterns will be identical. This is similiar to the
archimedian spiral. The approximate pattern is given on page 442. The
pattern is pretty much constant over a reasonable range of parameters.

The characteristics of this antenna were measured extensively by John D, Dyson
with some of the results given in the paper: "Equiangular Spiral Antenna'",
IEEE, AP April 1959. He found that the antenna must have at least 1% turns
in each arm before it would show reasonable patterns. The truncation was

found by measuring many different antennas. On page 443 is a curve which
gives the truncation constant in terms of another comstant: K.
- a
K = e §

The length along the arm necessary to radiate the lowest frequency with a

3 dB axial ratio is a function of the wrap angle and the width of the windings
(&). Dyson measured spirals with wrap angles ranging from 66° to 79° for
this curve. The upper truncation constant determines the start radius
necessary to achieve good patterns at the highest frequency. The initial
radius should be at most A/8.

Examp%e: Design an equianular spiral from 1 GHz to 12 GHz with a wrap angle
of 70° and self complementary arms.

The initial radius is determined by the highest frequency.

r = A/8 = 0.12 inches
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Chapter 11 Frequency Independent Antennas

We will pick the initial radius to be 0.1 inch. We now need to find the
constant K to use the curve on page 443 for the length of the spiral.
-T2 tam (707)
K=e =.56

From the curve the length of the spiral at the lowest frequency must be 1,05
wavelengths.

L = 12.4 inches

This is the length along one of the edges of the spiral which are all the same
if the end of the spiral is an arc about the center as shown on pages 439 and
441, The outer radius is found from the equation for length.

Y.
J 1+ Tan 2

r = 4,34 inches

r=r,+

We can compare this to an archimedian spiral which is 1.25 wavelengths in
circumference at the lowest frequency.

r = 2.35 inches

The archimedian spiral would be continued a few more turns for the loading,
but it has a much more favorable size compared to the equiangular spiral.

In this example of the equiangular spiral we can find the number of turns
from the equation of the curve.
ad

r*:roe
#=gh(L) = (twa) bn(Z)
4 = /0.36 Tukrns = /aé‘f,_é /65

This is the number of turns in each arm, Suppose the antenna is made with a
wrap angle of 80 . The inner radius would still be 0.1 inches. The factor

K is calculated: — T2 44w (80°)

K=e

This point is off the graph given on page 443. We can see from the graph
that an arm length of one wavelength would be sufficient.

276

L = 11.8 inches
The outer radius is given as 8
e r= 0.1 + = 2,15
V/+ tan™(80%)

This compares well with the archimedian spiral. It has 2.77 turns in each

arm., In order to have the smallest possible diameter we need to design with
large wrap angles,

Lbl
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Chapter 11 Frequency Independent Antennas

The beamwidths of a great circle pattern will changes slightly as the frequency
changes. This is especially true for small wrap angles (large a). With the
same antenna the beamwidth changes for various patterns. The pattern with a
given beamwidth will rotate with frequency with respect to the antenna. This
comes from the fact that the frequency scaling is achieved by rotating the

active region on the arms. The scaling is proportional to the radius. If

the frequency increases from f1 to f2, this is proportional to an angle rotation.

"Cr-/‘f/ = e/ = ea(cﬁz—cﬁ,)

A9 = L (44)

The rotation is proportional to the logarithm of frequency. The equiangular
spiral is also a log periodic structure in this sense. This spiral is also
called a log spiral.

Feeding the Equiangular Spiral

The spiral must be fed with a balanced line or the even mode (unbalanced mode)
radiation will squint the beam. The properties of the antenna can be used to
form a balun. The truncation condition means that the current attenuates
rapidly beyond the active region, This means that currents which are induced
on the antenna outside the active region do not get coupled into the input
terminals. This property is used to make the balun. A coax cable is soldered
to one of the arms with a connector beyond the large end of the spiral. At

the center of the spiral a connection is made from the center conductor of the
coax to the other arm. To maintain symmetry an outer shield of a coax is
soldered on the other arm, The current on the outside conductor flows from
inside the conductor to the outside of the conductor and on to the arms of the
spiral. Any currents which are induced on the outer shield of the coax

beyond the active region will not reach the connection because the outer

shield is now part of the antenna which satisfies the truncation requirement.
This is called an infinite balun. See page 446 for a diagram of the connection.

The spiral may also be mounted over a cavity so that the opposite sense
polarization will not radiate. The antenna may be fed from a balun like the
archimedian spiral when mounted in the cavity.

Like the helical antenna and the archimedian spiral, the equiangular or log
spiral currents can be expanded in' terms of the fundamental modes:

eijmﬁ

Only the terms m = ¥ 1 give a contribution to the field on boresight and
correspond to the left and right hand circular polarization components.
Rumsey in Frequency Independent Antennas, 1966 shows that the current on the
arms does not follow the direction of the windings but varies in direction
throughout the spiral with the amplitude of the current decreasing rapidly
after the active region. As the frequency changes the direction of the
current at a particular pointi.on the spiral changes direction.

445
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CONICAL LOG SPIRAL ANTENNA

The planar equiangular spiral has the following problems. It radiates equally
on both sides with opposite polarizations. This can be fixed by mounting the
antenna over a cavity. The second problem is that the beamwidth cannot be
varied. These problems can be solved by forming the equiangular spiral on a
cone. The high frequency portion is near the apex of the cone. Because of
the truncation principle which the spiral continues to satisfy when bent into
a cone, the radiation tends to zero in the direction of the increasing cone.
This leaves the antenna as a backfire antenna with the maximum radiation in the
direction of the feed. The antenna must be a fast wave structure in the
active region for this to occur. Of course, this antenna is a fast wave
structure in the axial direction. This is in constrast with the helical
antenna which is a slow wave structure and a forward fire antenna. The A
result is the opposite of the helical antenna; the cross polarization circular
component in the direction of the traveling wave current decreases while the
backfire component increases.

A figure of the conical spiral antenna is drawn on page 448. The arms of the
antenna are projected on a cone defined by the angle 90 from the center line of
the cone to the cone surface. The equation of each spiral on the cone is
given by

fﬁb S 6,
p=pe b= %

TAn

The angle o¢ is the angle of the spiral with respect to the line drawn from the
vertex to the windings along the cone. P is the distance from the vertex
to the spiral. Note that this reduces to the planar spiral if © = 7/2,

The width of the windings is defined by the angle & shown in the %igure.
The length of the windings is given by

L=dP-R) 1+ 1/6* = (P-p) J 1+ taw'st /s

which is similiar to the planar spiral.

The characteristics of this antenna were also measured by J. D. Dysonl. As
with the planar spiral he made a large number of antennas and measured their
characteristics. The pattern is predominately unidirectional toward the tip
of the cone. The average half power beamwidth can be related to the cone

and wrap angles. This has been plotted on page 449. Using these beamwidths
we can estimate the directivity from the nomograph on page 38 with a horizontal
line. In general the directivity increases for increasing wrap angles and
decreasing cone angles. Note that the beamwidth can be varied only over a
limited range.

1. Dyson, J. D., "The Unidirectional Equiangular Spiral Antenna', IEEE Trans.
AP, Oct., 1959.

Dyson, J. D., ""The Characteristics and Design of the Conical Log-Spiral
Antenna', IEEE Trans., AP, July 1965.
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Chapter 11 Frequency Independent Antennas

The necessary size of the antenna can be determined from near field measure-
ments which were correlated to the far field patterns. If a small probe

is positioned along the windings on a radial line from the vertex, the current
on the windings is found to increase and peak in the active region. After
the active region, the current attenuates rapidly. The pattern is not
changed if the current has decreased at least 3 dB from the peak current on
the small end. This establishes the upper truncation constant. Similiarly,
if the lower diameter is sufficiently large enough so that the current is
attenuated by 15 dB, there.will be no change in the pattern if the antenna is
truncated. On page 451 is a plot which gives the upper and lower truncation
constants for various design parameters.

Example. Dgsign a conical log spirél with a cone angte of 15° with a wrap
angle of 80  from 1 GHz to 3 GHz.

20 = 30°
o
Upper truncation constant, a;/) = ,07
+
Lower truncation constant, alS/A = .22

These are the radii of the cone at the top and bottom. The upper cone dia-
meter is determined by the upper frequency.

Upper Diameter = (2)(.07)(11.80285/3) = 0.55 inches

The lower diameter is determined by the lower frequency and the lower truncation
constant.

Lower Diameter = (2)(.22)(11.80285) 5.193 inches

The height is found from the diameters and the cone angle.

Height = (5.193 - .55)/(2 Tan Oo) = 8,664 inches

The antenna can be designed somewhat smaller if the pattern is allowed to
degrade at the band limits. A curve for this design is given on page 452.
The lower truncation constant now corresponds to 10 dB attenuation of the
current from the peak in the active region. The example can be recalculated.

Upper Diameter = (2)(.076)(11.80285/3) = 0,598 inches

3.871 inches

Lower Diameter (2)(.164)(11.80285)
Height = 6,108 inches.
The polarization of the antenna can be determined by viewing the antenna from

the vertex. It is determined by the hand rule with the thumb in the direction
of propagation.

450
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Chapter 11 Frequency Independent Antennas

This antenns can also be analyzed by the same mode theory as the helical
antenna and the planar spiral. The usual radiation mode described above
is the T, mode. It is the only mode with its radiation peak on boresight.
We can understand the attenuation of the current on the spiral as being
due to the coupling of the lower order modes into the higher order modes
as the diameter increases. Rumsey has suggested that this coupling is
due the the curvature of the windings.

MODE 2 CONICAL LOG SPIRAL ANTENNA

There are applications where it is desireable to have a butterfly pattern
and still have circular polarization at the beam peak. The first higher
order radiating mode (T,) of the conical log spiral will give such a pattern.
The easiest way to achiéve this mode is to use four arms in the spiral., This
mode requires that the phase change 477 as the antenna is rotated once
around or 77 for 90° of rotation. The mode function is

€‘J'275

for a right hand circularly polarized wave. The feed for the 4 arm spiral is
given as the diagram below.

The four arm spiral can also be fed in the T, mode if the phase shift between
P . 1
windings is 90  as shown above for RHC.

There is only limited design information in the literature. No one has done
an extensive study like Dyson did for the two arm spiral, A typical measured
pattern is given on page 454. The pattern has a null on boresight and

broad beams pointing at about 52°, Both the limited theory and experience
have shown that the beamwidth can be varied only over a very limited range

of values. It will vary from about 48° to 600. Higher wrap angles and
smaller cone angles will decrease the beamwidth but only within the limits
given above, The direction of the beam can be varied by changing the wrap
angle of the spiral,. On page 455 is a curve of beam direction versus the
wrap angle, It has been found that this will hold true for a large variation
of the cone angle. We have an antenna which we can vary the direction of

the beam but not the beamwidth.

The diameters at the top and bottom of the cone will be larger than the two
arm case, It has been found that if the lower truncation constant given
by Dyson's curves for the two arm spiral are multiplied by 1.42 then this
will be a good truncation constant for the four arm mode 2 conical spiral,
This seems to hold for a range of wrap and cone angles. The upper trunca-
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Chapter 11 Frequency Independent Antennas

tion constant shouwld be multiplied by a factor which is a linear function
of the wrap angle, It varies from 4 at 65° wrap angle to 2.3 times at

a wrap angle of 80 from.the values given on Dyson's curves. Since a
little extra length at the top of the antenna will not degrade the pattern
or increase the length significantly, it seems best to just use the lower
value for all designs.

Example, Design a 4 arm mode 2 conical spiral to point the beam at 60° from
500 MHz to 1500 MHz. Cone angle equal 10 degrees.

From the curve on page 455 we find that the wrap angle needs to be about 60°
for the pattern to point at 60, We find the upper and lower truncation
constants from the curve on page 451 for the two arm spiral. To these
values we multiply by the factors given above to obtain the truncation
constants for the mode 2 spiral. The upper diameter is determined by the
upper frequency and the lower diameter by the low frequency.

]

1.63 inches

Upper Diameter (2)(2.3)(.045)(11,80285/1,5)

Lower Diameter (2)(1.42)(.25)(11.80285/0.5) 16.76 inches

Height 42,9 inches
We could reduce the size of the antenna by using the curves for degraded
performance at the bandedges.

FEEDING CONICAL LOG SPIRALS

The antennas must be fed with a balanced transmission line. The two arm
spiral can be fed with the infinite balun in the same manner as the planar
spiral. A coax line is soldered to one of the arms of the spiral. At the
top the center conductor is conmected to the other arm of the spiral which
should have a dummy coax soldered to it to retain symmetry. The attenuation
of the current beyond the active region will prevent currents induced on the
outer shield of the coax from reaching the input. This balun requires a long
section of coax line because the lengths of the arms are much longer than the
planar spiral and the width of the windings must exceed the diameter of the
coax. For some applications the loss in this long coax are objectionable.

The antenna may be also fed from a line upper the center line of the cone.

A suitable balun for this application is the split tapered balun described
on page 149, This balun can also be realized by tapering the ground plane
of a microstrip line until the lines are balanced. A connection to this
type of balun is drawn on page 457 for the 4 arm conical spiral. The two
arm conical spiral can be directly connected to the two sides of the parallel
plate line. A second type of balun which can be use on a line up the
center of the cone is the ferrite bazooka balun described on page 147. With
this type of balun, the coax can be run all the way to the connection which
is shown on page 458 for the four arm conical spiral. It is a cleaner
connection to the four arm spiral.

It is difficult to tell from the patterns if the four arm mode conical spiral
needs a balun. The pattern does not squint in the same manner as the two
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&

Parallel Plate Line on Substrate
Coming up from Balun at Base of Antenna

Direct Connection

_—— Jumper Strap
to other side
of Parallel
Plate Line

—

Cone Angle

L Arm Mode 2 Conical Log Spiral Connection to

Parallel Plate Line on Substrate running to
Tapered Microstrip Transmission Line Balun

Located at the base of the Antenna
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Jumper Strap Soldered to Center Conductor

141 Semi-rigid Coax

=== Gonductors Soldered
to Outer Conductor
of Coax

L4 Arm Mode 2 Copnical Log Spiral Connection

to Coax feed without Balun

458

Fundamentals of Antenna Design by Thomas Milligan Copyright 1981



Chapter 11 Frequency Independent Antennas

arm conical spiral, Since the pattern has a null on boresight and broad
beamwidths, the squint cannot be detected in azimuth patterns. The squint
shows in conical patterns about the beam peak. The pattern will show large
ripple in these patterns when there should not be any. Like all squint
problems, these pattern problems are caused by multi-modes on the antenna.
In some applications the pattern of the 4 arm mode 2 spiral can have this
ripple and still meet the requirements. The coax can be connected directly
to the spiral without a balun.

Dyson has shown that the best patterns are obtained from a complementary
antenna. If the arms are complementary with the spacings between them,
then we can estimate the input impedance from the Babinet-Booker principle
even though the antenna is not planar. The two arm spiral will be close
to 189 ohms for the complementary antenna and the four arm impedance will
be close to 95 ohms. Because the antenna is not planar, the impedances
that are measured on the antennas tend to be somewhat lower, The two

arm spiral usually measures about 150 ohms.and the four arm conical spiral
measures about 85 ohms. The width of the arms can be varied to obtain a
better match with only a little effect on the pattern responses. Larger
widths on the arms will reduce the input impedance.
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LOG PERIODIC ANTENNAS

The number of structw es which will continuously scale themselves is quite
limited. All these structures involve the rotation of the observation point

to achieve frequency independent operation. They also radiate circular
polarization. Linearly polarized frequency independent antennas are achieved
by using structures which scale exactly only at discrete frequencies and are

not strictly frequency independent. Between the frequencies of the scaling,
the pattern characteristics will ripple between the exact scaling frequencies.
If the scalings are close in relative bandwidth, then the antenna may not

change its pattern and impedance response rapidly and the antenna is practically
frequency independent.

Not only do we need a structure which will scale itself at discrete frequencies,
but the current must attenuate rapidly outside an active region so that the
antenna can be truncated. Truncation is possible if the parts of the antenna
couple 'to each so that there is a change of modes in the antenna or if the parts
of the antenna outside the active region do not resonate and the currents are
reduced. The structure must also transmit the energy from a feed region to

the active region. Before the active region is reached, it is a transmission
line.

Every log periodic structure has a basic cell which is scaled. The ratio of
scaling is a constant throughout the antenna.

et A2 _
£ Al

T is the scaling constant which will be taken as less than one. The antenna
will have the same characteristics at the scaled frequency for an infinite
structure. The antenna will scale exactly tor the following sequence of
frequencies.

T n
T

The scaling period is related to the frequencies by
nln T = Ln(fo/fn)

The antenna is periodic in the logarithm of frequency. In fact every dimension
of the antenna is lgg periodic since the dimensions are propertional to wave-
length which is log periodic.

The design of log periodic antennas proceeds in two parts. The pattern charac-
teristics are determined by the number of elements in the active region and their
spacings. The (H Plane) pattern is also effected by the spacing of the diff-
erent portions of the active region. The actual size of the antenna is
determined by truncation constants and the frequency limits of operation. The
truncation constants are determined from the number of elements in the active
region. The possible range of gains achieveable is limited because there is

a limit to how few elements are in the active region and still allow truncation
and because the antenna is frequency independent which means the possible
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aperture size is limited.

We will cover the log periodic dipole antenna (LPDA) first and will use it to
understand the other types of log periodic antennas.

LOG PERIODIC DIPOLE ANTENNA (LPDA)

The drawing on page 462 shows the elements of the log periodic dipole antenna.
There are three dimensions: L is the length of the dipole elements, d_ 1is
the spacing between elements, nd R is the distance from the virtual aBex to
the dipole element. As mentioned gbove, all parts of the antenna have the
same scaling constant, 7 .

Ln=oL,T"!
dn = d,T"!
ﬁﬁ, = Rﬁ 27"*!
Note that dn is not an independent variable.
dn:= k%" E%+/ = Rn(]-“t)
Since the ratio of Ln to R.n is the same for all elements,
_L'..'l_—_- L/Zh-/ _ L,
Rn R TNt £

the end points of the elements will lie on the same line as shown. The angle
between the endpoints and the center line is called the half apex angle, X.
This angle is given by

X = Zﬁ%vgl(;;;%I)

: 1, .. .
Carrel” introduced a second constant of the log periodic dipole antenna to
describe the spacing between elements.

dn
Zln

ag =

Spacing Constant

The LPDA will then be determined by the two constants:
T - Scaling Constant G~ - Spacing Constant

All antennas with the same constants will have the same patterns (same Phi
angles). The half apex angle can be determined from Z and G .

Ly= Gn - R(1-7)
20 2.a

Carrel, R., "An Analysis of the Log Periodic Dipole antenna', 10th Annual
Symposium on USAF Antenna R & D Program, October, 1960.
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X = fAN"//\’n(/—’C) 1) -7
—_— T = A
4En0‘ Z‘N (4<T

This function has been reduced to a nomograph on page 464. The values on the

scales go beyond the practical limits of values for good designs. Of course,

the chart should help eliminate designs with small half apex angles which gives
very long antennas.

Strictly speaking the diameters of the dipoles should also be scaled by the
scaling constant. The antenna may be successfully made without scaling the
diameters or by scaling in steps. Not%ce that the feed lines alternate
between dipole elements, the extra 180 phase shift per element is needed for
the truncation requirements. We will come back to the reasons for this and
now proceed to the design.

Similiar to the work of Dyson on the spiral antenna, Carrel measured and calcu-
lated a large number of antennas. On pages 465 and 466 are plots of the E

and H plane beamwidths of the LPDA for various parameters. In general the

E plane beamwidth is less than the H plane. Because the antenna is made from
dipoles, there,will be a null at 0 = 90° in the E plane. Using these beam-
widths, Carrel” calculated the directivity using Kraus' formula, page 35, and
produced a curve given on page 467. Suitable values of the parameters can be
found from this curve and the estimated directivity can be determined for given
designs. Since there is a peaking of gain on the curve, there is a line of
optimum designs: minimum scaling constant for a given directivity. This is
the first part of the design; the size is determined by truncation constants.

The truncation constants can be found from near field measurements or from
calculated values of the currents in the elements similiar to the conical
spiral. The lower truncation constant is determined from the low frequency
end of the active region and the upper from the high frequency end currents.
The antenna can be truncated beyond these points without effecting the pattern
response. Like all truncation constants, the exact point will be vague. They
are determined by how much pattern distortion is acceptable. Two curves of
the estimated truncation constants have been drawn on page 468. The curve
for K., the lower truncation constant, was drawn for the worst case spacing
constant, J . The lower truncation constant is about 0.5 . This constant
is the required length of the longest element, Ll’ at the lowest operating
frequency.

L = KAy
Where ,X is the wavelength of the lowest frequency. The smallest element

is determined by the upper truncation constant, K2, and the upper operating
frequency bandedge.
Lu - Ki‘A U

Where A is the wavelength of the highest frequency. The largest and
smallest éiements are related by the scaling constant, T , and the number of

Carrel, R.L., "The Design of Log-Periodic Dipole Antennas', 1961 IRE
International Convention Record.
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elements, N. Using these truncation constants we can find the required
number of elements.

- - I
Ly = L, Z-” / =/, /0(” ) tog

N= /4 Log(Luyi,)
LajZ‘

This can be related to the truncation constants, and the upper and lower
frequency bandedges.

-ﬂ-‘ = /(Z/\u — kz Fl..

L/ /(//\L kl Fb(

N = 1| + Lag K, FL)
LagZ‘

Where F._ and F_ are the upper and lower frequencies. The number of elements
is a function of the ratio of the truncation constants, the relative bandwidth
of the antenna, and the scaling constant, .

The truncation constants define the edges of the active region. If we pick
a single frequency, then the constants can be used to find the number of
elements in the active region.

N,o= 1 + Log(K,/K,)
Log( T)
In general . more elements in the active region means higher gain and less

ripple in the frequency response. But this is true because the scaling
constant, T, is higher. These relationships have been reduced to a nomogram
on page 470. Using this graph, the number of elements in the LPDA can be
determined.

The spacings between elements are found by using the element length, L 0’ and
the spacing constant, ¢ .

d = 2L 0
n n

The distance from the element to the virtual apex is given by

d 2L o L
R = n - n - n
n 1 -7 1 - 2 tan X

ol is the half apex angle. The axial length of the total antenna can be
found by using these Rn.

N-1
N-1,  2Lyo@-777)

Length = Ry - Ry = Rl(l - ) = T
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Example. Design a LPDA from 100 MHz to 1000 MHz with T = 0.9 and 0 = .15

The E and H plane beamwidths can be estimated from the curves on pages 465

and 466.
o

E Plane Beamwidth 53

66°

H Plane Beamwidth

The directivity is given on page 467 as about 9.5 dB. The size of the antenna
is determined from the frequency bandedges and the truncation constants. These
are found on page 468.

Lower Truncation Constant, K1 = 0,54
Upper Truncation Constant, K2 = 0,32

The longest element, L., is found from the lower truncation constant and the
low frequency bandedge, 100 MHz,

L= K A = o0.54 11:80285 _ 3 o4 iiches

1 100 MHz 0.1

We can find the number of elements in the active region and the required
number of elements from the nomogram on page 470. Draw a line intersecting
the two values of the truncation constants to the blank axis on the left side
of the paper. From this point on the blank axis draw a line through the
value of the scaling constant on the tilted axis to the right to the next
vertical axis which is the number of elements in the active region. In this
example there are 6 elements in the active region. Next draw a line from
the point on the blank axis on the left through the bandwidth ratio scale

to the blank axis on the right. The bandwidth ratio in the example is 10.
Draw a line from the point on the blank axis to the right through the value
of the scaling constant on the tilted axis to the last scale to the right.
On this scale read the total number of elements required in the antenna.

The number required for the antenna in the example is 28.

The half apex angle is found from the formula on page 463.

oA = tan'l((l -TYea) = 9.46°

The angle can also be found from the nomogram on page 464.

The distance of the first element from the virtual apex is found from the
formula on the bottom of page 469.

R, = 2% = 191.21 inches
1-7
Notice that the first element is the longest element even though the antenna
will be fed from the end with the shortest element. Using this value of Rl’
we can find the total length of the antenna.

N-1

Length = Rl(l - T ) 180 inches
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The initial spacing between the element is found from the scaling constant, ,
and the length of the first element, Ll'

d1 = 2 Llcr = 19,12 inches

The lengths on the elements, the spacings between them, and the distances from
the virtual apex can be found by successive multiplications by the scaling

constant. When this is done the following table is generated with the design.
Ly © Ln-1T dn B dn—l < Rn B Rn-l <
Number Element Length Spacing Virtual Apex Distance
1 63.74 19.12 191.21
2 57.37 17.21 172,09
3 51.63 15.49 154,88
4 46,47 13,94 139.39
5 41,82 12.54 125,45
6 37.64 11.29 112,91
7 33.87 10.16 101.62
8 30.49 '9.15 91.46
9 27.44 8.23 82,31
10 24,69 7.41 74.08
11 22,22 6.67 66.67
12 20.00 6.00 60.00
13 18.00 5.40 54,00
14 16.20 4.86 48.60
15 14,58 4.37 43.74
16 13.12 3.9 39.37
17 11.81 3.54 35.43
18 10.63 3.19 31.89
19 9.57 2,87 28.70
20 8.61 2,58 25.83
21 7.75 2.32 23.25
22 6.97 2,09 20,92
23 6.28 1.88 18.83
24 5.65 1.69 16.95
25 -5,.08 1.53 15,25
26 4,58 1.37 13.73
27 4,12 1.24 12,35
28 3.71 11.12
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PHASE CENTER

We first discussed phase center when we covered corrugated horns on page 284.
It is that point on the antenna where it appears that the antenna radiates
spherical waves. This phase center can only be defined for the main beam.
Even then the phase center will only be an average. The method of measur=-
ing has been discussed before. For most antennas the location will depend
on the plane of measurement (E or H Plane).

The phase center of the LPDA is approximately the same in both planes. We
are interested in the phase center of the antenna because it is very useful

as a feed for a parabolic reflector. The phase center is located approximately
at that point on the antenna where there would be an element a half wavelength
long. We will measure the distance from the virtual apex.

\+ -~ &
Az |\ o
N

|
,,,,,f"”’/’Active

Region
The distance to the half wave element is R = 2
4 Tan o<
Carrel found the phase center analytically and related it to R
p
K = R
g

This ratio is plotted on page 474. Notice that the E and H plane factors are
different and that the phase center location is only a function of the scaling
constant, T. The phase center is slightly in front of the half wave element
location,

R = K A
P 4 Tan o

Let us calculate the phase center of the example above at the geometric mean
frequency of 316 MHz, From the plot we find

K, = .8622 K - .87
o = 11.80285 K_
©  316)s Tan(9.46)  ~7-86 inches R = 48.52

We must be satisfied with a compromise when the antenna is used as a feed for
a reflector. The phase center of the feed should be located at the focus of
the parabola,.but the phase center moves with frequency. On solution is to
use small values of o~ , the spacing constant, which corresponds to large
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values of < , the half apex angle. Then the phase center moves slower with
changes in frequency and the phase error does not increase due to axial de-
focusing as fast as feeds with small & .

fiff = —'CTA( </E}>:z K
df 4 £ tavx dA 4 tan

The rate of change of the phase center with respect to wavelength is a constant
independent of wavelength (the antenna scales itself),

ELEVATION ANGLE (Psi)

The dipole elements of the antenna must be alternately connected with a phase
reversal between the elements, The usual way of achieving this is to rumn two
lines for a feed and alternately connect the dipoles to it as shown in the figure
on the top of page 476, It is not necessary that the two sides remain separated
by the same amount. We can space them apart at an angle as shown on the

bottom of page 476. For the antenna to remain frequency independent it is
necessary for the two sides to intersect at the virtual apex. The angle.is
measured from the center line between the sides and is denoted: 99 . The

phase center is a linear function of wavelength when measured from the virtual
apex. If the two sides are angled from the virtual apex, then the phase

center distance from the apex will scale exactly with frequency and the distance
from the two portions of the active region on the two sides remains constant

in wavelengths.

The main effect of the angle ¢’is to decrease the H plane beamwidth as
increases, This can be understood by considering the sides as elements of
an array. As we increase the distance between the array elements, the beam-
width decreases., The distance is twice the distance from the phase center
location to the center line.

s = znpsmy/

We can analyze the pattern response if we assume there are two elements with
patterns aligned toward the virtual apex.

AP,
AP RN
\ e

| S

é

E(8) = ’BESINO o (0sw)fe) + s ((0-9)12)
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Above is an approximate expression for the pattern in the H plane. The value
of n is determined from the beamwidth of the antenna when ¢ = 0. From

page 36 we have

n = Log (%) HPBW - Half Power Beamwidth
2 Log(Cos (HPBW/4))

This is an array where the elements do not have the same pattern so pattern
multiplication cannot be used. The patterns are the same but point in diff-
erent directions., One trouble with this analysis is that the effects of
mutual coupling have not been accounted for in the development. Because each
side is only half an antenna, the coupling between sides is an important
factor.

One consequence of moving the sides apart is to increase the backlobe and
reduce the F/B. In the limit as ¢ = 90, the front and backlobes are equal
which we can see from symmetry. The distance of the phase center from the
virtual apex will be reduced. The phase center will be on the center line
between the sides. The phase center distance is now

R = R__ Cos
py po ° gﬂ

Where Rno is the phase center distance along one of the arms. This reduces
the variation with frequency as well by the same factor.

Some designs use a variable () angle, increasing for lower frequencies.
If we were to estimate the beamwidth using the formula above, we must use the
distance between the phase center sections and not the expression involving
sin ¢ which assumes a unform ¢ throughout the antenna. 1In these cases
the phase center distance from the apex should be measured along the arm and
not directly. The local rate of change of phase center is proportional to
the local cos ¢ .

ARRAYS OF LPDA

The antennas can be used to make broadband arrays. If we want to retain the
frequency independent nature of the antenna element, then we must keep the
distance between the phase centers the same in terms of wavelengths as the
frequency changes. The array will be frequency independent only if the
virtual apex of all the elements of the array coincide. Also the scaling
constant, 7 , and the spacing constant, 0, must be the same in all antennas
of the array. On page 478 are diagrams of E and H plane arrays of LPDA.

The phase center distance from the apex is a linear function of wavelength,
In terms of wavelengths the distance between the phase centers of the elements
of the array are equal for all frequencies, The pattern of the array must
be found by a formula similiar to the one above where the direction of the
pattern elements must be accounted for each element. The mutual coupling
effects are less important because the second half of the antenna is near

and the combination will cancel out the effects since they are out of phase.

The phasing of the antenna elements is important. If the antenna is turned over
in the array, 180 of phase will be added to the element. In an array of two
elements this would give a null on the axis between them. This is the effect

of placing an antenna over a ground plane. The virtual apex of an LP over
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a ground plane must be located on the ground plane. The log periodic antenna
is unique because it can be phased in a frequency independent manner. Given
a particular antenna, if we multiply every element by the scaling cogstant,
then the phase at the phase center of the antenna will change by 180°. This
is the same antenna only the connections to the feeder have been changed. The
location of the phase center does not change because there are more or less
elements in front of it. It is located as a ratio of the point where an
element would be a half wavelength. The phase can change arbitrarily by
multiplying all the elements by

¥ieo

e Y- Phase Shift (Degrees)

X can be positive or negative, The number of elements does not directly
determine the frequency bandedges but the truncation constants. This phase
shift is relative to an antemna which remains the same. We can use this
method only in an array. Changing the far field phase of a single antenna
isoirrelevant. To change the phase of one antemna relative to another by
90" multiply by 1

'Z‘Z
If we have two antennas at right angles with one of them scaled by ZI%, then
we will have circular polarization when fed in phase. The opposite sense
of circular polarization is obtained by feeding 180 out of phase.

=
0° L
RHC JE} . Scaled by 7
180°
o‘

We have been using a scaling constant,_zn, to scale the elements of the antenna,
The scaling constant of a log periodic antenna should scale the antenna exactly,
but this is not the case. When all the elements are multiplied by 7f’,2the
phase of the antenna changes by 180°. The true scaling constant is T7,

Some papers in the literature use this constant. The fundamental cell of

the antenna contains two dipoles and a cross over,

ANALYSIS OF LPDA

Feed Fundamental Cell
d

It is tempting to think of this as a dipole and a parasitic element, but this
is not the proper analysis. Both elements are fed. We can analyze this as
a two element array. The extra distance, d, that the signal travels from the
feed element to the second decreases the phase until the second element becomes
like the reflector on page 318 and gives a backfire radiation. Near the point
where the elements are a half wavelength long, the currents will rise on the
dipoles because the impedance presented to the transmission line feeder is
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better matched.

Assume that the active region for a given frequency is near the middle of the
antenna, The elements near the feed are mismatched to the feeder transmission
line and have small currents on them. Also the elements are alternately phased
so that the radiation from one element is cancelled by the near by elements
which are out of phase. This region is similiar to the center portion of

the spiral antenna or the top portion of the conical spiral. The waves are

in the slow wave section of the ante nna: a shunt capactively loaded transmission
line. When the active region is reached, the currents rise in the elements

and the phase shift between elements is sufficient to give a backfire radiation.
At this point the waves are transforming from a slow wave region to a fast

wave region and radiate., Beyond the active region, the currents attenuate
rapidly. Using this simple one mode analysis we cannot see any reason for this
attenuation except for .the mismatch of the elements to the transmission line.
But this will not explain all the attenuation,

There have been two approaches to a detailed analysis, Carrel uses a circuit
approach, The antenna is divided into an antenna section and a feeder section.
A mutual impedance matrix can be found for the elements alone and the corres-

ponding admittance matrix which is the matrix inverse. 7 = Y-l
A A
i .
Y11 Y12 Yi3 - - 0 Yy
Y12 Y3 Yp3 -+ v -
¥A = . .
| Yin NN

Similiarly we can find the admittance matrix of the feed circuit.

-
Yll le 0 e 09 <0080 ceoe 0
Y51 Y9 Yy3 0 oo een 0
Y =
F 0 Yy, Yy Yy 0 .. O
K Yoot Y

Where all terms except the diagonmal and : the line off the diagonal are zero.
The two networks are connected in parallel.

Antenna Elements

|
) |1l | dl A |4l

JES
‘VAI VA - “
ol f ud o] ]
Terminating Z 41‘1/ J// // // f Input Feeder Circuit

= f
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Notice that the feeder circuit includes the phase reversals, The current

into the parallel connection of the feed circuit and the antenna is the sum of
the two currents into each part. The voltages are the same. These define

the node currents and voltages for the combination.

IF = Y? V? IA = ¥A VA
I = IF + IA = (YA + YF) YA
Multiply through by the matrix ZA and we get the relation.
I = (U + YF ZA) IA U - unit matrix

Antenna Element
Tai |
Ii,4=>/r Currents on the Connection of the Feed and the Antenna

po

Fi —

Feeder Circuit

The driving point current vector, I, has a non-zero term only at the input.
The currents in the antenna element bases can be found by inverting the matrix.

T = U + YF ZA

I,

-1
a + YF ZA) I
Once we know the base currents, then the antenna pattern can be calculated and
the active region identified. The second approach analyzes the antenna as a
tapered periodic structure. The currents are expanded in terms of the space
harmonics of the periodic structure. This is a multimode analysis. The
current decreases after the active region because it is coupled into higher
order space harmonic modes which attenuate rapidly. The first method does not
implicitly use the mode method although it is there with the coupling between
elements. We could find eigenmodes from the matrix equation. Both the log
periodically scaled and the continuously scaled antennas reduction in current
after the active region can be explained by mode coupling through the active
region of the antenna. The net result is the radiation of the energy in
the active region and the reduction of the currents, This reduction enables
the truncation of the antenna.

A successful log periodically scaled antenna must have a scaling constant near
enough to one so that ripples between exactly scaled frequencies are small
enough to be insignificant. Second there must be coupling between the diff-
erent elements so that higher order modes will be generated. The phasing on
these must be.so the currents are attenuated after the active region with the
structure transforming from a slow wave to a fast wave structure through the
active region.
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FEEDING THE LPDA

Like the spiral antenna, the truncation principle allows the antenna to be fed
with an infinite balun. The currents on the antenna attenuate rapidly after the
active region which means any currents which are induced on the antenna beyond
the active region toward the low frequency end will not couple into the feed

of the antenna. This is one of the consequences of backfire radiation. When
we discussed spirals, it was said that there are nulls in the pattern in the
direction of increasing structure. It is also true for the log periodically
scaled antenna.

The infinite balun consists of a coax line soldered to one side of the antenna
feed line. At the feed end the center conductor is jumpered to the other feed
line. To maintain symmetry an outer shield of a coax is soldered to the other
feeder. The current on the outer conductor of the coax flows out on to the
outer surface and down the feeder. The outer shield of the coax and the dummy
coax become part of the antenna. The currents on the feeder are reduced from
the truncation and backfire radiation. Hence currents induced on.the outer
shield of the coax beyond the active region will not couple into the feed region.
A diagram of the feeder and infinite balun is on page 483.

The input impedance will varying with the same frequency ripple spacing as the
pattern response. Carrel has devised a method of calculating the mean impedance
of the antenna. The impedance will vary about this value with a peak VSWR

of about 2:1. Suppose the feeder has a characteristic impedance of Z without
the elements. We can relate this to a capacitance per unit length fPom the
expression on page 70.

Where C 1is the capacitance per unit length and v _is the free space velocity
of light. The elements of the antenna can be apprgximated as small capaci-
tances shunted across the line. The impedance of the antenna is approximately
the impedance of the feed including the shunt capacitance of the elements.
Before the active region is reached, the antenna is a tr ansmission line which
acts as a tapered transmission line transformer into the active region. If

we divide the capacitance of the elements by a length, we obtain a second
capacitance per unit length due to the elements. These two capacitances add
to give the total capacitance per unit length of the equivalent transmission
line. The overall effect of the elements is to lower the impedance of the
feeder.

The capacitance of a small dipole is proportional to its length.
Z = - Za Cot()BLi/Z)

Where Li is the total length of the dipole. Za is the average characteristic
impedancé of a dipole.

Za = 120 ( Ln(Li/(Z a)) - 2.25)

Where a is the radius of the dipole. We have approximated the dipole as a
shunt open circuited stub. We can replace the cotangent by its small
argument approximation. The capacitance of the dipole becomes

. 2
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L,
i

i - 2 v 2
o a

The length associated with this capacitance is the geometric mean of the two
spacings on either side.

-/ - n
dmeén - dn dn-l \’ZT
The capacitance per unit length due to the dipole becomes

ength 2 v d. Z

We can substitute this in and elimin-

But from page 461 we have O 5L *
ate the dependence on lengths. n

Ac = 40":—-2
o a

If the ratio of the diameter to the length of the element remains constant
throughout the antenna, then the capacitance per unit length is constant through
out the antenna. The capacitance due to the lengths of the dipole elements
increases as the same ratio as the distances between the elements. This

ratio is the scaling constant of the antenna.

The average input resistance is given by

/ L
_ o) s .
Ro = E;——;fzsa- L0 inductance per unit length

Substituting C into the equation, we get

L T
R =\/ o =/_0_\/ 1
° Co+ il’ Co 1+ J'L'

4-a'vo Za 4o~VOCOZa

0 1

YA = — =

(o}

We can make the substitutions /L
C

_ / 1
Ro'zo\/1+fi.—z
A

o o

This will give the mean value of resistance at the input. If the antenna is
elevated as shown on the bottom of page 476, then the feed line will be an
impedance transformer to the higher impedances of the lower frequency end.
The initial feed region can become very critical in these cases.

484
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The currents on the feeder will radiate like any other current. These are
traveling wave currents while the currents on the elements are standing waves.
The standing wave currents are larger and radiate more energy. The two sides
of the feeder have currents in opposite directions and their radiation will
tend to cancel each other. This radiation from the feeder will limit the
cross polarization response. Because these currents on the feeder are
traveling wave currents, they will radiate predominately in the forward
direction; opposite the backfire radiation of the elements. These traveling
wave currents are slowed by the elements which broadens the beam and gives
significant radiation in the backfire direction. See pages 359 and 360 for
an example of greatly slowed traveling wave radiation. There will still be
a null in the direction of the feeder because the element pattern is the
incremental dipole. Most antennas have some elevation angle, ¢’, which will
fill in the null.

On the diagram on page 483 we see that the jumper at the feed will have a finite
length. As the upper frequency bandend is increased this length becomes more
significant. The jumper can be respresented as a series inductor_at the input
of the antenna, It will be a complex network of inductance and capacitance,
but for our purpose modeling it as an inductor is sufficient. The inductor
will give a phase shift between the two sides of the antenna which will squint
the beam. The phase shift of a series inductor in a transmission line’is

iven b
) ’ o = ~taw "’ —625-)
2%,
For small values of X , Tan X = X which then gives us
—180 wio .
X = =L in degrees
2T 2, 8

We can represent the antenna as a two element array with a phase shift between

the element s.
.\‘ :o 5"\-’/5'5 S/~ 8

o

- S o
We can find the direction of maximum radiation from the diagram above, Draw
a zero reference plane through the phase shifted element and adjust © until
the phase shift to the directly fed element equals & .
S S = = =/ &
B w @ = 6 = Smv (/BS)

The beam will be squinted in the direction of the jumpered element and will
increase with frequency.

LOG PERIODIC ANTENNA .TYPES
The other log periodic antennas we will look at have similiar properties to
the log periodic dipole antenna (LPDA). They are linearly polarized with a

significant cross polarization response. We will describe the antennas using
the same parameters as the LPDA even though the literature has different
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paramters in some cases, Usually the literature uses the true scaling
constant, see page 479, and the total angle between the sides is used.
instead of ¢ defined above as being between the center plane and the arm.

The first log periodic antennas were cut from flat sheets by R. H. DuHamel and
D. E. Isbell of the University of Illinois as shown on the top of page 487.
The patterns are the same on both side of the antenna which we can see from
symmetry. The pattern is polarized in the direction of the teeth which shows
that the resonant currents on the teeth are much larger than the traveling
wave radial currents. The angle X on the figure corresponds to the half
apex angle of the LPDA. The other angle /3 describes the width of the bifin
portion of the antenna.

Isbell took the design above and inclined - the two sides as shown on the bottom
of page 487. This reduced the pattern backlobe response to give a undirec-
tional pattern. The antenna above has an impedance of about 189 ohms for a
complementary structure. Bending the two arms together lowers the input
impedance which is reported to be 70 ohms when the elevation angle, ¢, is 15°
Finually DuHamel and F. R. Ore straighten the teeth to produce the trape201da1
tooth log periodic antenna which is shown on page 488. 1In this design the
width of the teeth equals the spacing between them. We still have the same
definition of the half apex angle « and the width of the bifin is defined by
the angle . The ratio of the lengths R, and R, is given by a scale factor,

T . Again this conforms to LPDA deflnlélon an% is the square root of the
real scaling constant. The two sides are separated by the angle 2¢/ and the
sides project to a virtual apex. This antenna has a good structure for high
frequency operation because it is largely self supporting. It can be fed from
an infinite balun by soldering a coax and a dummy coax on the two arms. It is
not necessary to have the teeth the same width as the spacing. Reducing the
teeth width logically transforms the antenna into the LPDA. Note that the
distances Ri are always measured from the bottom of the teeth.

The trapezoidal tooth log periodic antenna is impractical for low frequency
antennas .because of the size and weight on the teeth. Dulamel and Ore tried
making the antenna with a wire outline which followed the outside dimensions
of the teeth. This antenna has practically the same pattern as the trape-
zoidal tooth antenna but reduces the weight and wind loading to produce a
practical low frequency antenna. A diagram of this antenna is given on page
489. Notice that the direction of the teeth alternates on the two sides of
the antenna. A table of designs found by DuHamel and Ore is given on page
490, It was found experimentally that the spacing constant, 0, is limited
to less than or equal to 0.3; for larger spacings the antenna pattern breaks
up. One of the advantages of the trapezoidal tooth antenna is that smaller
scaling constants can be used compared to the LPDA, The log periodic dipole
antenna (LPDA) must have a scaling constant greater than or equal to 0.8, but
the LPIT antenna has good patterns even with T = 0.63. This is possible
because their is greater coupling between the flat plates of the teeth compared
to dipoles. As the width of the teeth is reduced the lowest possible
scaling constant increases until the antenna is a LPDA,

The shape of the teeth is not too important as long as they scale. On page
491 is a diagram of a triangular tooth antenna. The distances from the
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virtual apex to the ends of the triangles, R,, scale by the scaling constant.
The antenna can also be made from a wire outline structure as shown on page
492, This antenna has an easier construction than the trapezoidal tooth wire
outline antenna. Its patterns are similiar to the trapezoidal tooth antenna
although the coupling between teeth will be less and will have a larger scal-
ing constant lower bound than the trapezoidal tooth antenna.

Successful Trapezoidal Tooth Outline Antennas

Scaling Elevation Half Apex E Plane H Plane Side-
Constant Angle :Angle Beamwidth Beamwidth Directivity lobes
0.63 15 30 85 153 5 12

0.63 15 37.5 74 155 5.6 12,4
0.71 15 30 70 118 7. 17.7

0.71 15 37.5 66 126 7 17
0.63 22.5 30 86 112 6.3 8.6
0.63 22.5 37.5 72 125 6.6 11.4
0.71 22.5 30 71 95 7.9 14
0.71 22.5 37.5 67 106 7.6 14.9
0.77 22.5 30 67 85 8.6 15.8
0.84 22.5 22.5 66 66 9.8 12.3
0.84 22.5 30 64 79 9.1 15.8
0.63 30 30 87 87 7.4 7
0.63 30 37.5 73 103 7.4 8.6
0.71 30 30 71 77 8.8 9.9
0.71 30 37.5 68 93 8.1 12.8
490
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To end this discussion of log periodics we will discuss a use from another
field. The musical scale was originally based on the Pythagorean system
which gives the intervals between notes as the ratio of integers. This
system works fine for melodies using only the diatonic scale, but when
chromatic notes are introduced, the system proves to be inadequate. It
became necessary to devise other methods of tuning because the system gave
perfect pitches for simple notes, but intolerably wrong pitches for some notes.
In fact instruments were tumed to particular keys. By the 16th century
organs were being made with split keys so that all different melodies could

be played. Different parts of the keys controlled different pipes.

There were a number of solutions to this problem but the one which survives
is the even tempered scale. This scale spreads the inaccuracies over all
the intervals, There are 12 half steps or semitones between octaves ( the
doubling of frequency). Even tempered means an equal ratio between notes or
log periodic. We can find the scaling constant of this system.

/
T = ?7;& = 0,944

If we take instruments such as organ pipes whose resonant frequencies are
determined by lengths, we can find the ratio of the lengths by using the
scaling constant.
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