Chapter 13 Radiation from Apertures

RADIATION FROM APERTURES

When analyzing large antennas, that is, large in terms of wavelengths, many
of these antennas can be considered as apertures, They are analyzed with
a common aperture theory. The method is exact in some cases but will only
give approximate answers or valid results only over part of the pattern for
most cases. The simplicity of the method is its best virtue. We have
already used the method for horns and slots. It may be applied to planar
arrays approximately and helps to give bounds on the pattern. The second
consideration is that we usually separate out the polarization effects and
are left with a scalar problem.

We can consider apertures with various distributions of fields and find the
radiation pattern by a Fourier transform relation for the far field. This
will involve, for a planar aperture, a two dimensional transform, but in many
cases the distribution can be separated into X and Y components as a

product relation. When this is done, then the transform separates into a
product of transforms and we can consider single dimensional Fourier transforms.
We are familiar with the one dimensional Fourier transform from signal
processing which helps us visualize the pattern in various planes from the
size and distribution in the aperture plane. Large apertures give small
beams similiar to long time intervals which give low frequency responses.

The sidelobes of the pattern are related to the harmonics of the equivalent
time waveforms under Fourier transform. Rapid transitions in the time
response leads to high harmonics in the frequency domain (Fourier transform).
Rapid transitions in the amplitude in the aperture plane gives high side-
lobes (harmonics) in the far field response (Fourier transform). This is
convenient when both areas use the same mathematical development.

We need to look at the problem with some rigor before we simplify the anal-
ysis so that we can go backwards and fill it in when needed. On page 211
the induction theorem was developed to relate equivalent magnetic and
electric surface currents to the electric and magnetic fields, respectively,
in the aperture. We performed a similiar operation when we analyzed a slot
in an infinite ground plane by the equivalence theorem where we only have

a magnetic surface current. In the case of the slot we used image theory
and obtained a solution valid only on one side of the infinite plane. The
equivalence theorem gave us an exact solution. When we use the induction
theorem, we obtain only approximate solutions because the ground screen

is still present and usually ignored. It limits us to accurate solutions
normal to the screen, that is, not too close to the directions of the
ground plane. We used this induction theorem solution to analyze horn
patterns which do not, in general, have apertures in large ground planes.
There is no distinction made between a horn in free space and a horn open-
ing in a ground plane. Nevertheless, the method with all its approximation
can accurately predict the gain of the horn.

Suppose we find the magnetic and electric equivalent surface currents from
the fields in a planar aperture, S, which we will take as in the X-Y plane.
From these currents we can find the electric and magnetic vector potentials.
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Where k has been substituted for B as the propagation constant which fits
the general literature. Also the rigorous expressions for the vector
potentials have been used which are valid in the near field as well as the
far field. ¥ is the vector to the field observation point and r’ is the
vector to the source point in the aperture. To be completely rigorous, we
need the fields over an infinite aperture (a closed boundary). The fields
outside of a large aperture will be nearly zero and we can integrate only
over the physical aperture.

FRESNEL AND FRAUNHOFER REGIONS

These regions are characterized by the type of approximations which are made
in the integrals. The Fresnel region is the closest to the aperture of the
two regions and is the near far field while the Fraunhofer region: corresponds
to the usual far field approximation. Both approximations substitute the
field (observation) distance r for |T - T'l in the amplitude term. This
means that we get for the vector potentials:

- KIF-F'1 - -/kIF-F
4,"[[ A gy R 37T gy

Fresnel and Fraunhofer Regions
The only difference between the two regions is the manner in which the phase
term is handled. Let us expand the phase term.

%
IF -3 = @ +e'? -2 EE)?
Expanding this in a Taylor series in 1/r‘terms, we get:

2L i)+l

E-E" = r-fE 4

Where 7 1is a unit vector in the direction of the field point. In the
Fraunhofer approximation we retain the first two terms.

— -— A
IT -t'l = r -1+r" =1 -1' CosyY

Where (/ is the angle between the source and field point vectors. The
vector potentials become:

[ — Jkr’cos;bds eJkr/ = /K’rcossé

4mrr

4-7Tr'

These are the usual far field expressions.

The Fresnel zone approximation retains the terms in (r')2 which gives the
the following integral for the electric vector potential.
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A similiar expression is given for the Fresnel zone magnetic vector potential.

We have only applied these approximations to planar apertures but they hold
equally for linear or volumetric distributions of sources. There is no
clear boundary between the near, Fresmel, and Fraunhofer regions. It is
common to the take the §tart of the Fraunhofer region to be somewhere
between L“/A and 2L°/A where L is the maximum dimension. Let us find
the phase error difference between the Fresnel and Fraunhofer approximations
at these distances along the axis normal to L.

T r' FeF'=0
L - ,
r'= L
1 z
e =
_ LT _zm v T (L/2) T
r= - Phase ERROR = ~37 - A T T F
- LN
r= 2L Phase ERROR = —
A )

The second is the usual phase error given for the far field approximation
for antenna patterns. The Fresnel zone is usually taken as the region:

1< ()< ("74)

Antenna patterns are usually taken at least at a distance ZLZL& from the
antenna, but this distance may be not sufficient for low sidelobe antennas
because these phase errors will raise the measured sidelobes and broaden
the measured beam. We will discuss this further when we consider phase
error problems of low sidelobe antennas. The far field or Fraunhofer
region may be further than indicated by this bound.

We can use the vector potentials to find the fields from apertures but.we
will find it convenient to use the aperture fields more directly. Consider
the following two integrals which are one half of Fourier transform pairs
involving aperture fields and the radiation fields.

S

g = ([ mxw /Frieost g
S

Where the Fraunhofer approximation has been used; the Fresnel approximation
may be obtained by comparing to the integrals above, When we relate these

532

Fundamentals of Antenna Design by Thomas Milligan Copyright 1981



Chapter 13 Radiation from Apertures

integrals through vector potentials, then we can find the radiated fields
in terms of them. Eo and Ho are the aperture fields which are related to

the currents:
M = Ex3a J = 3a xH
s Z s Z

Above are the surface currents for an aperture in the X-Y plane. When we
expand these, we get

M = Ea - E a = -H 3
s y X Xy s y °x Xy

The vector potentials in terms of the integrals become:

E = Zv — '/’("' -/kr
s (76’ Qx q)’) (“9;/4)( + Ix /) e’
4mrr 4mr

In the far field we have for the electric field
E=-jwuA - jqweFxq,

When we substitute in this expression the vector potentials in terms of the
Fourier integrals, the electric field becomes

E = le <€e e/tr((qux - 2.4 )7 (7(‘7): 6}/))‘&;

The far fleld can only have 6 and @ components which are projections of the
above field on the 59 and aﬂ vectors (scalar vector product).

E9=E'a0 E¢=E.a¢

When these products are performed, we get the results:

. - kr
Eg = J/;:: (4, cosé -/—-6,5//«/;6 .,I.I(cosé(~9><5”"‘3‘S +9/(°5¢))

E¢’ = —J%r((fx s -)(;,CDSfﬁ) Cos 8 +l’((9;<c°-5<lS # Gy SV ¢))

If we assume that the magnetic field is related to the electric field in the
aperture as a free space plane wave then

79 = £ and - = -/
since * " 79K 4

7/-/), = Eyx and -7 //x = E'), in the aperture.

With this approxmatlon the far field equations become

Eo = J’;@ " (14 c050) (£ cos b +4, 5w B)

kaj (/+casé)(fx siv g = C°5‘15)

T

Eg
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These are the same formulas as obtained on page 214 for the Huygens source,
Of course, the same assumptions were made about the relationship of the
electric and ‘magnetic fields in the aperture for the Huygens source. We

will be interested in the fields near boresight which reduces the equations
to

; -k

2mr

Eg = —jked (4smé -

([.,L_ cas&) > (We ignore the obliquity factor.)

We can easily eliminate polarization from these expressions by separating the
polarization in the aperture. If we only have an X component of the electric
field in the aperture, then there will only be a fx component in the far
field which leads to an X component of the electric” field in the far field.

£ = LKke/ET
X 2Tr X

The two radiation components are the projection of this field on to the a, and
a, unit vectors. Except for the 1/R amplitude factor and the propagatiog -
pgase factor, the voltage radiation intensity is proportional to fx’ the
Fourier transform of the aperture field.

£ =[ Ey) o K (xsm@<os? +ys’"95’”’6)dzd/
S

We can define a vector propagation constant
k = ak +ak +ak
X X yy z 2z

where k =k Sin © Cos #, k =k Sin © Sin #, and k_ = k Cos 8. We can
. X . . z
write the Fourier integral as

flke,k,) = f[E(z, v e’/ dxdy

We show f as a function of kx and k_ which is referred to as the k space
components. This is an expansion of the fields in terms of plane waves.
Since the radiation of an antenna is into an unbounded region, the expansion
of the field in terms of rectangular harmonics gives an infinite set of
eigenvalues which are the k_ and k_ components and the sum of eigenfunctions
becomes an integral. The §oundar§ condition is the fields in the aperture
plane which is satisfied by the integral of the Fourier transform over the
aperture. This forms the basis for planar near field measurements.
Similiarly, expansions in cylindrical and spherical eigenfunctions leads to
the other two types of near field measurements.
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The inverse transform can be used to find the field in the aperture plane.

* S ;T —
E(X, ) =_[ /f(kx,/(,)e/k Tdksdk,
—00 —oa9

With a given pattern in k space, we can find the aperture field. We need to
know the phase as well as the amplitude of f£. Usually only the amplitude

is known or specified. The second problem is that the transform will give
values for the aperture over an infinite aperture which will be truncated at
some point and have some effect on the final pattern. This method can be
used in a limited fashion to synthesize aperture distributions from patterns.

In the process of finding the transform of the aperture field we find f£(k_,k )
for all values of k-T'. The maximum value of Sin © = 1 which means the
range of ker' in the visible range is limited, The values of £ outside
the visible range correspond to stored magnetic and electric fields in the
near field of the aperture. In a synthesis procedure using the inverse
Fourier transform we are free to pick the values of f outside the visible
region which will simplify the aperture field.

RECTANGULAR APERTURE

We can illustrate these ideas with a rectangular aperture in the X-Y plane
with a uniform field. Yy Bfy

-[(kx,Ky) = Eo
=9 b

This integral can be separated into the product of two integrals
d/z b/Z

ftx,v) = Eofeik""c/x/eJ'@yaj/
R "

o (KX + Ay y)cly o

flx,v) = 4abk, siv(Kxa/p) S/N(kzb/z)

Kx /2 ky b/2
The pattern in the principle planes is found by considering kx and ky'
kX =k Sin O Cos @ ky =k Sin O Sin @
Sin(anIZ) Sin(k_b/2)
f¢ -0 4 ab Eo ——§;27§——— f¢=90 =4 ab E0 kyb/Z

The pattern in each plane is determined from the aperture direction contained
in that plane. This is a reiteration of pattern multiplication.

The maximum value of k_ or k_ is one in the visible region. The bounds on
the visible region of kxa/Zy are - 7a/A . The general pattern is drawn
on page 536 which is a repeat of the pattern on page 119 for the uniform
line source with ka/2 as the abscissa. The values of ka/2 in the visible
region are determined by the width of the aperture. Larger values of a or
b of the aperture dimension extends the visible region in k space., We
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Chapter 13 Radiation from Apertures

also see that the beamwidth decreases with increasing aperture widths. The
half power beamwidths in the principle planes are given by

0.886A/a and 0.886 )\ /b in k space.

Example: Find the beamwidth of an aperture 12 wavelengths wide with a uniform
distribution.

Sin(BW/2) = 0.886A/(2a) = 0.886/24
BW = 2 Sin 1(0.0369) = 4.23°

We could approximate the Sin(X) by X in radians for large apertures.

BW/2 (Radians) = Sin(BW/2)
_ 180 0.886 X - °
BW = 2 =& 50.8 A/a
In the example this becomes: BW = 4.23° or the same as the exact formula.

From the plot on page 536 we can see that the first sidelobe is 13.3 dB below
the main beam.

TAPERED DISTRIBUTIONS
We can find the response of tapered distributions by performing the Fourier

transform or by consulting tables of transforms and making the proper sub-
stitutions to obtain the pattern in Sin O space.

Triangular 10
This has the voltage distribution shown in the figure. 1
The Fourier transform can be found in tables.
~%/2 ' af2

£(k) = (Sin(k a/4)/(k a/4))

A plot of this distribution is given on page 538.
Beamwidth (in K space) = 1.275A/a
Sidelobe Level = 26.5 dB

Cosine

The cosine distribution tapers to zero on the edges and is the amplitude
distribution of the H plane of a rectangular horn., The distribution is given
by

E(x) = E Cos(T x/a) Cos(k_a/2)
X

£(k ) =
1 - (alp)?
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Chapter 13 Radiation from Apertures

The distribution for the Cosine aperture distribution is plotted on page 540.
The beamwidth and sidelobe level is read from this plot in k space.

Beamwidth (k space) = 1.189 \/a
Sidelobe Level = 23 dB

Cosine Squared Aperture distribution
Sin(kxa/Z)

E(x) = E Cosz(7Tx/a) f(k ) = 2
o x ka/2 (1 - (a/l2X)7)

The k space pattern is plotted on page 541 from which the beamwidth and first
sidelobe levels are found.

Beamwidth (k space) = 1l.44A/a
Sidelobe Level = 31.5 dB
Cosine Squared on a Pedestal Aperture Distribution

There are three advantages to raising the cosine squared aperture distribution
on a pedestal. First the beamwidth can be decreased from the zero pedestal
distribution. Second the maximum sidelobe can be reduced because the sum of
the two portions of the pattern due to the pedestal and the cosine square
distributions will cancel the near sidelobes. Comparing the plots on page
536 for the uniform distribution and the plots on page 541 shows that the
first sidelobes of the uniform distribution are within the main beam of the
cosine squared distribution k space pattern. The sidelobes of a pattern
alternate sign compared to the main beam. These sidelobes which are phased
at 180° will cancel the main beam of the cosine square pattern and give a
narrower main beam for the composite. The second sidelobe of the uniform
distribution occurs in the range of the first sidelobe of the cosine squared
pattern. They will cancel because they are 180° out of phase. The third
advantage to the pedestal is that the field does not go to zero at the edge
of the aperture. This can become difficult to achieve. If the aperture is
approximated by an array, the power division network must supply a large
ratio across the aperture.

We find the Fourier transform by using the sum rule. The Fourier transform
of a sum is the sum of the Fourier transforms. The k space pattern is
the sum of the two k space transforms for the uniform and cosine squared
aperture distributions. The distribution must be normalized when this is
done.

On page 542 is a k space pattern of a distribution with a pedestal 10 dB
below the peak. Comparing this with the pattern on page 541, we see that
the main beam has decreased but the sidelobes have increased. These
increased sidelobes come from the uniform distribution.. There is an extra
sidelobe next to the main beam. If we decrease the size of the pedestal,
then we can expect the outer sidelobes to decrease but the main beam to
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Chapter 13 Radiation from Apertures

increase. A k space pattern for a pedestal height of 15 dB below the aperture
distribution peak is plotted on page 544. The sidelobes have decreased to
33.4 dB which is lower than the cosine squared distribution and the beamwidth
is still lower. Finually a 20 dB pedestal reduces the maximum sidelobe

level to 40.2 dB below the main beam as shown on page 545. The beamwidth is
still slightly less than the cosine squared distribution. The maximum side-
lobe will not decrease indefinitely but reaches a minimum for a pedestal

level at about 22 dB which can be seen from the plot on page 546 of the
maximum sidelobe versus the pedestal level, The beamwidth factor is also
plotted on the same graph. It is less than the beamwidth factor for the
cosine squared aperture distribution (1l.44) over the range of pedestal

levels on the plot.

The aperture distribution is given by
E(x) =PD + (1 - PD) Cosz(zrx/a) 1x1< a/2
where PD is the voltage pedestal level.

This distribution is a handy approximation for tolerance studies on the more
difficult to obtain Dolph-Tchebyscheff array distribution where the array
values are samples of the continuous distribution.

Taylor Distribution

The Taylor distribution seeks to lower the inmner sidelobes of the uniform
distribution much in the same way the cosine squared distribution added to
the pedestal reduces the sidelobes of the pedestal. Taylor achieved this
by modifying some of the zeros of the k space pattern of the distribution

to lower the sidelobes. The aperture distribution is expanded in a Fourier
cosine series and a match is made between the assumed aperture field and

the k space pattern by a Fourier series expansion in k space.

The uniform aperture distribution has the following k space pattern:

Sin U
7U

where the substitution U = a/)A (Sin @ - Sin @ ) has been made. The nulls
of the pattern are located at integer values of U. A number of the close in
nulls are picked to be modified to lower the near by sidelobes. Pick an
integer, n, such that the nulls for |Ulz n are located at integer values as
before. We remove the n -1 nu&ls from the uniform distribution by dividing
by the product of factors: (1 - U /Nz), N=1, ... , n -1,

Sin U
U %—'l-l (1 - U2/n%)
N=1

We then add back modified nulls, Un’ to get the final k space pattern.
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Chapter 13 Radiation from Apertures

n-1
2, 2
fuy = SinTU I, a-vnd
U n-1 2 9
I (L -Uu7/N%)
N=1

Taylor determined the location of the new nulls from the Tchebyscheff poly-
nomials in an approximation to the Dolph Tchebyscheff array and gave the
following formula for the nulls,

2 2
= A( (A2+9N'%> Y8 N=1, ...,8-1

U
A +({1-%)2

n

A is found from the expression: Cosh77A = b, with 20 Loglob = Sidelobe Level.

This gives us the pattern in k space, but we must still find the aperture
distribution that will give this pattern. The aperture distribution may be
found by expanding it in a Fourier cosine series.

o0
E(x) = Z Bm Cos(2m17x/a)
m=0

The pattern is found from the Fourier transform.

* K X
f(kx)=[5(x)e“ “Tdx
T
%> ,
27T
Iz
Substituting the expression for E(xX) and reversing the order of the sum and
integral we get o0 {

fu) = Z BM[CGS(ZMTFX/CL)

m=0 =

j2mux/a
e

dx

z

Since the aperture distribution is an even function, the odd part of the integral
will be zero and the expression for the k space pattern becomes

— Y
flw = Z Bm[ Cos(2wwX/a) Cos (2muX/a) dX

m=0 ~%
We can find the coefficients, B , by matching the patterns at integer values
of U. The integral is zero unless U =m

a B0 = £(0)
a/2 B = f (m) m=1, 2, ...
But we have only modified the location of the first m - 1 zeros of the U space

pattern., -
f(m) =0 for m>n
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Chapter 13 Radiation from Apertures

The Fourier cosine series of the aperture distribution has only n components.
n-1

E) = (£(0) + 2 Z f(m)Cos(2m x/a) )/a
m=1

When we substitute integer values, m, in the expression for £(U), we are left
with indeterminate expressions such as

Sinogog = £(0) = 1

We can resolve these by using L'Hospital's rule.

£(U) = g(U)/h(U)

A=l 2, 2
ﬂ/(a) =TmCsmu [T (I- (,(‘/u;) -2U sm'nuz &L‘ T (i —-u/uv
N=[ k=1 *k N=1
N#K
n-1 n-1 | n-l e,
W)= 77 JTC—a®) —2u™m S L T G -u/n?)
_, kK N2y
N=1 k=1
N#K

f(m) = g'(m)/h'(m)
, A=l n-l
g(m) = T CasTm T (1 = m*uy) = (=) m T (- m*/u)
N=| N= |
Since Sin7/m = 0

n-{
In h'(m) the term ”QE: (L - mZ/NZ) = 0 since m = N for some N, In the
second term of E'§2) if k # m, then the term is zero from the product of
factors (1 -m /N'). The factor h'(m) becomes

- L h—l
20 T I (1 = mywy)

m*> N=

NEmM

The expression for the coefficients becomes

-l
)" TT G = mYus)
_g(m) - R_IN:I
=2 T () - M‘//\;"‘)
N=/

N#Em

With these expressions we can find the aperture distribution to give the desired
sidelobe level.

A Taylor aperture distribution was designed for a 30 dB maximum sidelobe level
by modifying 5 zeros of the uniform distribution or n = 6., n is the first
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Chapter 13 Radiation from Apertures

non-modified zero of the uniform distribution. The result of the calculations
above is the aperture distribution given on page 550. The k space pattern

is plotted on page 551 for this aperture distribution and shows a peak .sidelobe
level of 30 dB. A second design was performed with =n = 12, that is, there
are 11 modified zeros of the uniform distribution. The k space pattern of
this. design is plotted on page 552. By comparing the two patterns we can see
that the sidelobes do not tail off as fast for n = 12 as for the design with

n = 6, This is because the Dolph Tchebysheff array is more closely approxi-
mated with n = 12, The array has equal sidelobes everywhere. The_second
point is that the beamwidth for n = 12 is less than the design with n = 6.

The array has the minimum beamwidth for a given sidelobe level.

Beamwidth (k Space) 1.1166 a/x n=6

1.0937 a/\ n =12

Beamwidth (k Space)
Larger number of modified zeros will give smaller beamwidths as the design
approaches a Dolph Tchebyscheff array distribution which has equal sidelobes.
We can use this aperture distribution to design arrays which are sampled
apertures. This has an advantage over the array because it has a limiting
directivity for a given sidelobe level. The limit in a large Dolph
Tchebysheff array to the directivity is 1/(Sidelobe Level). The sampled
Taylor distribution does not have this restriction.
LINEAR PHASE TAPER

Suppose there is a linear phase taper across the aperture as shown in the
figure. We would expect the pattern maximum to be in the direction 00 for

Phase

a phase taper: - k x Sin @ . Substitute this aperture excitation into the
Fourier integral to obtain %he k space pattern,.

A .
kx (smg — S 8.)
[e:,(x) e’ d

X
Ve

For a uniform amplitude distribution the result of the integral is

6

‘( (Kx) =

Sin(kg( Sin @ - Sin 90))

f(k)= 2Ea
X ° 5%( Sin 0 - Sin 6 )

This is equivalent to shifting the origin in k_ space as shown on all the k space
patterns. Shifting the origin in k space broaﬁens the beam in real space. The
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Chapter 13 Radiation from Apertures

broadening is approximately due to the Cos Oo projection of the aperture in the
direction of the main beam. A plot of the ratio of the beamwidth at boresight
to the beamwidth for a scanned beam is given on page 554. Here the center of
the beam is taken as the mean between the two beam edges and not necessarily

at the peak of the beam. ~ As the beam approaches endfire, a point is reached
where the beamwidth defining level reaches 90 and we must say that the beam

is endfire even though the peak is not at 90°. We can say that there is
another beam below the aperture which is also approaching 90 . The two beams
merge into a single endfire beam. This is the limit of scan which increases
with increasing size of the aperture. A plot of the 3 dB beamwidth versus the
aperture size for various scan angles is given on page 555. The aperture
distribution is uniform. The curve is the same for other aperture distributions
only it is moved up. On this curve the scan 1imig shows. Apertures less

than about 15 wavelengths cannot be scanned to 80 because the beam becomes
endfire before the angle is reached.

Suppose the 3 dB beamwidth point is given by an expression

555 Sin @ = f C

for a symmetrical distribution in the aperture. The scanned beam is given by

K a +

= ( Sin @ - Sin 90) = _C
sin® = sin® & 2C hen sino+ 2% <1
o k a k a

When the inequality is equal to one, the 3 dB (or whatever level specified by C)
level is at endfire and the beamwidth will have a discontinuous jump. The edges
of the pattern beamwidth are found from

. _ . 2 C
Sin 91 Sin 90 Py
. _ . 2C
Sin 92 = Sin 9d + a

If Sin©® +2C/(k a) 2 1, then the beamwidth is 2(0l - 77/2) provided
sin 0= °1.

o
It is possible for the beam to be scanned into invisible space and Sin @ will
be greater than 1. This means that the phase taper along the line sourle is
greater than necessary to produce an endfire pattern such as the Woodyard and
Hansen endfire array (aperture). The peak of the beam no longer occurs at
Sin @ - Sin @ = 0 since Sin 0 is limited to one. The peak of the beam in
k space occurs at

an/Z = Sin 00 -1

The effect is to raise the sidelobes since the peak no longer occurs at zero dB
on the k space patterns and narrow the beamwidth. Remember we said that the
portion of the k space pattern in the invisible region represents stored energy
in the near field. The stored energy will raise the Q of the antenna which
reduces the frequency bandwidth and decreases the efficiency due to material
losses. ,
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Chapter 13 Radiation from Apertures
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Chapter 13 Radiation from Apertures

CIRCULAR APERTURES

Many common apertures conform to circles, The same two dimensional Fourier
transform relation holds but many of these can be separated in r and @', and
the integral can be separated into single integrals, In polar coordinates

the integral becomes
ZTrQ

fe,d) =//E(F)¢/)8J'k/°$/u9 Cos (¢ —(ﬁl})o d/o Y

where a 1is the radius of the aperture. This integral leads to a kp space.
Suppose we have a circularly symmetrical distribution. Because there is no
@' dependence in the distribution, the integral can be found exactly.

e ' V] -¢' !
£(Ke) =//E_(‘O)e_,/(‘o$/ 6 cas(¢$ ¢jfd/°4¢

T \
/QJ'K‘oS/A/e COS<¢—¢ )Q,¢, = QWI(k/OS/AIG)

Q

J . (x) is the zeroth order Bessel function of the first kind. The Fourier integral
for the circularly symmetric distribution becomes

@
fkp) = ZTT[E(?)J:(KpSNG)‘O dpe

and all § patterns are identical.

For a uniform aperture field this integral gives the k space pattern,

{(Kr) - oral :E'(ka,SNU6)

Kasiv8

The k space pattern is plotted on page 557.

Beamwidth (k Space)

Maximum Sidelobe 17.6 dB

The most common tapered circularly symmetrical distribution is a parabolic to the
n-th power.

E(p) = (1 - (p/a)” )"

We consider this because it has a simple Fourier transform and can approximate
tapered circular aperture distributions reasonably well.
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Fundamentals of Antenna Design by Thomas Milligan Copyright 1981



Copyright 1981

1 H wx ik ] -
5 -0 ws) R
N |4 ». BENRE. mmm - ‘ﬂ%w‘_‘y‘\ é@f
M~ WA., i @ o ) | (N7 =]
i i aiisEakiEE A S
| i | i m
lH‘ - ] ‘,H‘ﬁ‘\ n ] M - \N‘ B
i H o WA | (mw
s ‘ j = ' - | 1 Tk
; - - \ TS
B i B R R I I / %
r i mi N - N L' (&% T‘_m M
TGy SEbdL AR L ‘ I A wm
| \ =
H = 8/ A T
‘.\‘\ \‘\ | \‘ T
/ A

E
8=

o

lll 1

13 Radiaiion from Apertures

A

Chapt

0CET 91

Y'S'NNILIAYW "OD MISST B 1344NaM
S3IHONI 01 X £ HONI % OL 0i X 0Ol

oM

Fundamentals of Antehnai Design



Chapter 13 Radiation from Apertures

2" (k1) ! 3, (k a Sin 0)

f(kp) = Normalized Pattern
(k a sin 0)™'!

The first three orders of patterns are plotted on pages 559 - 561 in k space.
The scale used in these patterns is similiar to the scale used for the rect-
angular distributions so that comparisons can be easily made. From these
plots we find the maximum sidelobe level and the beamwidth factor.

n Beamwidth Factor Sidelobe Level
0 1,029 17.6 dB

1 1.270 24.7

2 1.473 30.6

3 1.651 36.0

The beamwidth is found from .the following formula for n = 0 (uniform)
Beamwidth = 2 Sin'1(1.029 A4 a)
with similiar formulas for the other cases of n.

PARABOLICN DISTRIBUTION ON A PEDESTAL

When a cosine squared distribution was placed on a pedestal for a rectangular
aperture, the maximum sidelobe was reduced. The second sidelobe of the uniform
distribution is located at about the same place as the first sidelobe of the
cosine squaréd distribution in k space and since the signs of the sidelobes
alternate, they cancelled. We can do the same thing by adding a pedestal to
the parabolic to the n-th power distribution for circular apertures. We find
the pattern by adding the Fourier transforms. The aperture distribution is

E(p) = PD+ (L -PD)(L - (p/a)))"

The unnormalized Fourier transform of the parabolic distribution is given by
2™l g k, a)
_ ntl 7
f(kf ) = nt+l
’ (kf a)
which includes n = 0 (the uniform distribution). The unnormalized Fourier
transform of the sum is

2 3. (k, a) Ml L (kpa
PD _JT{__P;_ + (1 - PD) il +f )
r (ko a)”

At kP a = 0, this becomes: PD + (1 - PD)/(n + 1) and is the normalization
factor.

A series of patterns were drawn for n = 2 and n = 3 from which the maximum
sidelobe and beamwidth factor were found for various pedestal heights. The
results of these patterns are plotted on page 562, This plot shows that

the minimum sidelobes occur for n = 3. If we compare the plot of the k space

558
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Chapter 13 Radiation from Apertures

of the uniform distribution on page 557 with the pattern on page 561 of the
parabolic to the 3rd power, we can see that the second sidelobe of the uniform
distribution is located at the point of the first sidelobe of the parabolic.

The alignment is better for n = 3 than for n = 2. The minimum sidelobes

occur when the pedestal level is 27 dB below the peak of the distribution.

A k space pattern of this distribution is plotted on page 564. From this plot
we can see that the beamwidth with the pedestal is less than the case n = 3
plotted on page 561. The beamwidth factor with the pedestal is 1.493 compared
to 1.651 without the pedestal. The first sidelobes of the uniform distribution
are located within the main beam of the parabolic to the 3rd power distribution.

CIRCULAR TAYLOR DISTRIBUTION

Taylor has also published a technique for obtaining controlled sidelobes for a
circularly symmetrical distribution on a circular aperture. The inner most
zeros of the radiation pattern of a uniform circular aperture are replaced by
new zeros which seeks to approximate the zeros of a Dolph-Tchebyscheff array
and lower the sidelobes. The distribution in the aperture is expanded in
terms of a series of Bessel functiomns.

The k space pattern of a circular aperture is given by the following integral.
a
-F(KF) = 277'/5([0) j:(k‘os/ué)/o dp
o

We will want to make a few substitutions so that the expression will match the
literature.

u=2a/j Sin 0 p= 7p/ a ge) = 22 E(p)/m

With these substitutions the integral for the k space pattern of a circularly
symmetric circular aperture becomes

'
f(ru) = [pg(p)v';(up) dp

0o

The pattern of the uniform distribution (g = 1) is expressed in the new variables

as JT (-nu)

f(mwu) = —Sa

This is similiar to the expression on page 543 in the discussion of the Taylor
line source. We want to remove n - 1 zeros of the radiation function.

Jl( Xln) =0 Let X1n = TTSn. n=20,1, 2, ...

X. are the zeros of J,(X). After we remove n - 1 zeros of J,(x) and add back
n A X . . } f .
new zeros the radiation pattern in k space is given by the following expression.

T, (ru) 'ilf(t—u’“/uk)

Ty

'?f ([—-UE/S:)

n=|
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Chapter 13 Radiation from Apertures

The nulls at S_ were removed and new ones, Un are added. Taylor gives the
following expression for the new nulls,

@k (- phE

N=1, ... ,n -1
"l @-nh?

UN = 8§

This expression is the same as the one on page 547 except for a comstant, S-.
A is found from: Cosh A = b with 20 Log,, b = Sidelobe level. Once we
have the new nulls, we can find the radiation pattern.

The aperture distribution is expanded in a series of Bessel functioms,
oo

() = Zsm To(S4P)

m=o
Substituting the expression for g(p) in the radiation integral and reversing the
order of the sum and the integral, we get

e o
flw = Z B [ P (5mP) To(uP) dp

m=9o

We will use point matching to find the coefficients, Bm. The point in the pattern
at U = Sk will only have a contribution from the k-th term in the sum.

™
f(sk) = ka,o T.(s.p)dp -

_ BK[E}J‘OZ(S"P) + J"Z<S/<P) .

The second term is zero at p = 0 and p =T since 'ﬂSk = Xlk’ a zero of Jl(x).

The first term is zero at p = 0.

2 T
f(sk) = B I T (s,
By = 2+ (sk)
T2 J;z(SKTF)
The aperture distribution becomeg"
_ - TP
9(p) = Y B, J5 (Sip) p=2£

m=o0

and the Fourier Bessel series only has n terms.

We are left with the problem of evaluating another indeterminate expression, f(Sk),
for the cofficients, Bk'

£€U) = d(u)/h(u) d(Sk) = h(Sk) =0
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Chapter 13 Radiation from Apertures

h(u) is the same expre831on we had before on page 548.

hm)-wﬁ<~umw.zwwz KF(“””ﬁ)
_ N# K

h'(Sm) = -2m T O — /53
ain

The numerator, d(u), is only slightly different from the expression for the
Taylor line source coeff1c1ents.

(/—u%(
q'(u) = TT(W)7(I-«1/u~) -2“7@"“)2 sk Nl )
=1 N g
h_
T
d(Sy) = 7T TS T (= Sw/ui)
N=1
For m greater than zero we can use the following recurrence formula to find the
derivative of the Bessel function.
1
J (x) =J (X) - Jl(x)/x

Since S is a zero of J,(x), the derivative of J,(x) evaluated at the zero of

J.(x) is Phe Bessel function, 0(x) The expression for the coefficients
becomes Ao
(N
17 G - Sm/ Uy
N=¢
B =~ —
72 T (77 Sp) -rf (- S@a/‘SN )
N=|
NEM
B, = /%

With these expressions the aperture distribution can be found for a given side-
lobe level.

A Taylor distribution for a circular aperture was designed for a 30 dB maximum
sidelobe level by modifying 5 zeros of the uniform circular aperture k space
pattern or n = 6, n is the first ummodified zero of the pattern. This is
similiar to the example on page 548 of the Taylor line source. The result of
the calculations is the aperture distribution given on page 567. If we compare
this distribution to the Taylor line source distribution given on page 550,

we see slight differences between the circular distribution and one-half of the
linear distribution. The pattern for the distribution on page 567 is given on
page 568. We see that the maximum sidelobe is 30 dB.
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Chapter 13 Radiation from Apertures

AMPLITUDE TAPER LOSS AND PHASE ERROR LOSS OF AN APERTURE

The directivity of a large aperture can be estimated from the beamwidths using
the Kraus formula, page 35. The directivity can also be found from the .
electric field in the aperture when we assume the Huygens source approximation:
the electric and magnetic fields are related by the intrinsic impedance of free
space (see page 212). The directivity is found from the formula:

: . 2
2 lJ()g-E(x,y) eJ(kxx + kyY) dx dy max
7(1 + Cos 8)

Directivity =
A? f/ B3| dax ay
S

Suppose the beam maximum is at © = 0 (boresight), then the formula for
directivity becomes

4T {]]g E(x,y) dx dy ,2

/Kz j]g lE(x,y)‘2 dx dy

The maximum directivity occurs when the electric field has uniform amplitude and
phase over the aperture. We would like to separate the loss in directivity due
to amplitude and phase variations of the electric field in the aperture.
Remember that the electric field, E(x,y) has both magnitude and phase (a complex
number),

Directivity =

The directivity of the uniform aperture is given by
Directivity = 4T1A/ )\2

where A 1is the area of the aperture. The directivity of the general aperture
illumination can be expressed as

Directivity = (47 A/ A%)(ATL) (PEL)
where ATL is the amplitude taper loss and PEL is the phase error loss.
Suppose the aperture distribution has uniform phase but an amplitude variation.

The formula for directivity given above can be expanded in terms of the real and
imaginary parts of the electric field phasor.

[ & dedy| = (f{&',{dxc{)/)?- + (f] & dxdy) "

E is the real part of Eo and E_ is the imaginary part. The integral in the
denominator of the directivity formula can be separated also.

;/Z/E,JW IEIIlc/xd)/

We have assumed that there are no phase variations in the aperture. Therefore,
we can add an arbitrary phase to the electric field so that the field is only
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real with no effect on the directivity. The magnitude of the field is given by

- 2 5
E = (E + E)

We can find the directivity for an aperture with uniform phase (PEL = 1) by the
following formula,

2
Directivity = ﬂffllEaldldy} 417 A
)2 ~ = ( 1.)(ATL)
f/lso) dxdy A
S
The phase has been changed until E_ = 0. We can solve for the ATL.

I
'IL/Eo’d%dYIL
“drxd
Afé/&},{ dxdy

The formula is valid even when the phase error loss factor is not one, because by
using only the magnitude of the electric field we have forced the phase response
in the aperture to be uniform which is our assumption for the formula.

Amplitude Taper Loss =

The phase error loss can be found from the following formula.
PFL = Dzzfctivitz
("/'\'2- A) (ATL)

Directivity = i—g (/ZER dzdy)L + (ffs Ez dxd/)z
S 10" dx gy

We can identify the phase error loss by substituting the formula for directivity
and ATL in the defining equation for PEL and cancelling terms.

(] Eedrdy)’ + (JI Exdedy)”
({1180 dxdy)”

These formulas separate out the effects of amplitude variation losses and phase

variations in the aperture on the directivity of the radiated pattern at boresight.
If these losses are expressed in dB, then the directivity becomes:

Phase Error Loss =

Directivity = 10 Log (4TA/ )3) + (A.TL)dB + (PEL)dB

The :losses are relative to the uniform phase and amplitude aperture. It is
important to notice that these are the losses at boresight. If there is a
uniform phase taper across the aperture, then the beam will be squinted and the
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formula for phase error loss will predict the boresight loss. This could be
quite large if boresight is in a null of the pattern. We can add an opposite
linear phase taper across the aperture to bring the beam back to boresight.

If we do this, then we are ignoring the beam scanning loss due to beam broadening
(page 554). We can use this to separate out phase error loss due to quadratic

or higher order phase error terms. These losses will become more important
when we discuss parabolic reflector feeds.

Separable Aperture Distributions

We Spent a great deal of space discussing rectangular apertures whose distribu-
tions could be written as a product of two factors, each as a function of X or
Y only. We need to develop formulas for the amplitude taper loss and phase
error loss which can also be separated.

E (x,5) = E;(x) Ey(y)
If we substitute this into the formula for amplitude taper loss, we‘get the
following.
z b T
([ 1E@eagdxy)
'@AL “bfo

ab
%, A

Where a b is the area of the rectangular aperture. We can separate these

- ( L Z/ £ (z)l cfx) L( £ :/L/ Ex(y)] d)/) "

% 2 & 2
ab//E,(x)ldz//El(/)/d/
> Ly

16,2 2.1 4 dy

ATL =

In this expression of integrals we can separate it into two parts in which each
part only involves one coordinate.

ATL = (ATL)X(ATL)y

(_/:7 & (x)l dz)L

7 .
a /a/ e (x)) dx

(ATL), =

We get a similiar expression for (ATL) . We can use this to evaluate the ampli-
tude taper loss of each of the linear geparable aperture distributions considered
before.
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The uniform aperture distribution obviously has an amplitude taper loss of 1
(0 dB). The next distribution we considered was triangular. The aperture
distribution is

E(x) = E (L - 12 x/al) -a/2 < x < a/2

Note that this is an even function (symmetrical about the origin). We can
evaluate each integral over half the interval and multiply it by two.

(2[;/;- 2xs) dx)
= a

X /7_
2“/1 - dXfa + 4X/a*dX

(o]

ATL

1f we have an aperture with a triaggular distribution in both planes, then the
amplitude taper loss will be (3/4)” = 2.5 dB.

We can list the amplitude taper loss. for various linear distributioms.

Distribution Amplitude Taper Loss
Uniform 1 0 dB
Triangular 3/4 1.25
Cosine ' 8/77'2 0.91
Cosine Squared 2/3 1.76
Cosine Squared on Pedestal 2

PD + (1 - PD) Cos>(Tx/a) %;%’g;ggl'
Pedestal
10 dB .756 1.21 dB
15 .713 1.47
20 .691 1.60

We can find the amplitude taper loss for various Taylor line sources by perform-
ing the indicated integrations on the aperture distributions.

Amplitude Taper Loss of Taylor Line Source

Sidelobe Level

n _20 25 30 35 40 _45 _50
4 .17 .43 .69 .91

6 .15 .39 .66 .92 1.15 1.35

8 .16 .36 .63 .90 1.14 1.36 1.55
12 .24 .34 .59 .86 1.11 1.34 1.54
16 .35 .35 .57 .84 1.09 1.32 1.53
20 .46 .37 .56 .82 1.07 1.30 1.51
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We can see that the amplitude taper loss of the Taylor line source is more a

function of the sidelobe level than the number of terms in the Fourier Cosine
series of the distribution (n). Notice that there is an optimum number, n,

for each sidelobe level which can be seen in the cases for 20 and 25 dB max.

sidelobe designs. In many cases we are interested in the minimum beamwidth,
For those cases the maximum number n will give narrowest beamwidth.

The phase error loss can be separated into the product of factors for each axis

if the aperture distribution function is also separable. The phase error loss
(or efficiency) is given by the formula:

PEL = lf/.:E dza}/f-
([f1e1dxdy)*

= = £,(x) E,(y)

//E(zc)dx é‘z(y)a}//z

~6,
pPEL = % ,
( [Tewla [ eiy)
-4/1. b/l
This can be separated into a factor for each axis.
Q/Z 2
// E ()dx |
PEL Ve

( [ I€, ()] %)

The formula for (PEL)y is the same.

Quadratic Phase Error

Suppose we have separated aperture distribution factor which has a quadratic
phase error and a uniform amplitude. We can define a term, S, which is the

maximum phase error in wavelengths along the aperture. The aperture distribu-
tion is written below.

E(x) = e'./'277'5 (ZX/Q)Z

The phase error is given by the formula for a single axis.
2X
}2[ l 5( ) x/
(2 [TTeems gy )"
0

The distribution is an even function so that we only need to take the interval
over one half the aperture and multiply by 2.

PELy =
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Note that ’e-jxl = 1 which reduces the denominator to a2. In the upper
integral make the following substitution.

U= 4Js (%/a) du = ﬂgdx

(PELL = f‘/x z dd/z

The integral must be divided into real and imaginary parts to find the magnitude.
25
ey - (Bl i) ¢ ([Tez)a0)]

- £ (et seE)

C(t) and S(t) are the Fresnel integrals. This function is plotted on page 575
along with other amplitude distributions. This graph shows that the more a
distribution is tapered, the less susceptable it is to quadratic phase error
loss. The edges of the pattern which have the most phase error are contributing
the least to the pattern.

Example, On page 224 there are dimensions of a pyramidal rectangular horn which
has quadratic phase error in both planes and the distribution is separable.

W= 11,38 (H plane width) Frequency = 8 GHz
H= 8.38 (E plane height) Wavelength = 1,475 in.
Rh = 20.06 (H plane slant length)
Re = 18.93 (E plane slant length)
The maximum phase deviation in the aperture is found from the following formula.
2 2
S = H S, = W
e 8 R A h 8 RhA

When we substitute the dimensions into these formula, we obtain: Se = 0.314

Sh 0.547

In the E plane the aperture distribution is uniform while the H plane has a
Cosine distribution. We can read the following phase error losses off the
curves on page 575.

(PEL)e = 1.56 dB (PEL)h = 2.07

The amplitude taper loss of the uniform (E plane) distribution is O dB and the
Cosine distribution (H plane) has a loss of 0.91 dB. The directivity of the
horn is found from the expression:

Directivity = 10 Log (4TA/A%) - (PEL) - (PEL), - (ATL)_
The resulting directivity is 22,87 dB,
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Chapter 13 Radiation from Apertures

Losses of Circularly Symmetrical Distributions

So many antennas are described by circularly symmetrical distributions that it
will be worthwhile to derive formulas for them. The formulas that integrate
over the surface of the aperture are still wvalid.

27 4 2
][//E(r)/rq‘r c/;é'/
, o
a2 N
jf/qEKd)rdrd¢’
9 Yo
We can perform the §' integrations simply since E(r) is not a function of @',
a 2
2 I.}r E(r)r dr
o

a
azjf‘E(r)]2 r dr
o

Similiarly, we can find an expression for the phase error loss.

(/otll-:,.(r)rdr © + (/oi‘l_—(r)rdr)z
([OQI E(r)|r df}z

Let us find the amplitude taper loss of the parabolic distribution. We will
normalize the radius of the aperture.

Amplitude Taper Loss =

Amplitude Taper Loss =

Phase Error Loss =

! 2 n 12
2‘j[ 1 -1 r dr
i - e @ -
f(l _r2)2nr dr
o
Make the substitution: u= (1 - r2); du = -2 r dr
/ 2
n
2 [£ [ udu]
ATL = 9 . 2n+|
2L (" B (Jq_p(>z’
7 | U du
()
Parabolic Distribution . Amplitude Taper Loss
n Ratio DB
0 1 0
1 3/4 1.25
2 5/9 2.55
3 7/16 3.59
576
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Parabolic on a Pedestal

2
. - D+ (1 - PD)/(n + 1))
Amplitude Taper Loss 5 2 PD (L - PD) N 1 - PD)?

PD- + n+1l 2n+1

Amplitude Taper Loss

Pedestal n=2 n=3
15 dB 1.12 4B 1.37 dB
20 1.61 2,09
25 1.97 2,64
27 2.08 2.82
30 2,21 3.02

The table of amplitude taper losses for the parabolicn on a pedestal shows that
the loss is decreased by putting the distribution on a pedestal.

Quadratic phase errors will effect the circular aperture in a manner similiar
to the rectangular aperture. A curve of the quadratic phase error loss is
plotted on page 578 for various circularly symmetrical distributions. The
uniform distribution is effected by phase errors more than the .tapered distri-
"butions. Small quadratic phase errors will raise the sidelobes of low side-
lobe antenna distributions. On page 579 is a plot of the first two sidelobes
of a 35 dB circular Taylor distribution with small values of quadratic phase
error. This has impoitance to antenna measurement. The source antenna would
have to be spaced .8 D7/) to measure the sidelobe level within 0.5 dB.

Amplitude Taper Loss of Circular Taylor Distribution

Sidelobe Level dB

n 25 30 35 40 _45 _50_
4 .30 dB .71 1.14 1.51 1.84

6 .28 .59 1.03 1.48 1.88 2.23
8 .43 .54 94 1.40 1.82 2.21
12 1.03 .62 .86 1.28 1.71 2.12
16 1.85 .86 .87 1.22 1.64 2.05

This table is similiar to the one on page 572 for the linear Taylor distribution.
The amplitude taper loss increases for decreased sidelobes. It also appears
that there is an optimum n for each sidelobe level to minimize the amplitude
taper loss, but it is a broad minimum.
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