Chapter 14 Reflector Antennas

REFLECTOR ANTENNAS

The most commonly used high gain antenna is a reflector antenna. This is so
because it is the most economical large aperture antenna. The only other
large aperture antenna is an array. An array requires at least four elements
per square wavelength and all the associated circuitly to feed the elements.
We can get a very large aperture in terms of wavelengths without making
thousands of elements. It is difficult to achieve low sidelobes and high
efficiency because the aperture illumination cannot be controlled exactly,
but the cost outweights these disadvantages in most applications.

GEOMETRIC OPTICS

Geometric optics is a means of approximating the field by assuming that the
wavelength is very small (or the frequency is very high) comparied to the
dimensions of the antenna. It is the zero wavelength approximation. As the
size of the reflector becomes larger and larger in terms of wavelengths, the
solution approaches the exact solution. To solve a problem we must trace

rays from the source antenna through reflections off the reflector to the field
point. The reflections off reflectors follow simple rules and in free space
the rays travel in straight lines., We need to consider conservation of

energy relations to find the amplitude levels along the rays. Finally we

trace all possible rays and add the electric fields using superposition.

The electric field in a source free, isotropic, homogeneous, non-conducting
medium can be expanded in an asymptotic series in descending powers of

called the Luneburg-Kline expansion, o

. E (x
E(X,Y,Z,aJ) = e—Jk L(X,Y,Z) _EE_iZ:il

m=0 (jao)m

L(x,y,z) = Constant is an equation which defines equal phase surfaces of the
field and k 1is the free space propagation constant., The function L(xX,y,z)
is called the eikonal. Maxwell's equations can be reduced to a vector
Helmholtz equation in free space for the electric field.

v2E+k2E=O

When we substitute the asymptotic expansion into this equation and consider the
lowest order term, we get an equation for L; the eikonal equation.

l‘7L’2 - n2

n is the refractive index (assuming/lxr = 1). The equation for the electric
field becomes

E = EO(X,Y,Z) e'Jk L(x,y,2)

when we use only the first order term of the asymptotic expansion. These are
the wavefronts of geometric optics. The waves will travel in the direction of
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the gradient of the constant phase surfaces.

Vi/n = S

S is the direction of the ray in space.

We only have a first order solution for the waves in space. If we take a
parabolic reflector with a feed at the focus, then the first order field
predicts a pattern only on the axis of the parabola and zero everywhere else.
There are three methods which will predict the field off the axis of the
reflector. The first is the aperture field method. Geometric optics is
used to predict the fields at an aperture plane in front of the reflector
which is a constant phase (eikonal) surface. The Huygens source approxi-
mation is applied to this aperture to find the fields off axis. The second
method uses geometric optics to predict the fields at the surface of the
reflector. The boundary conditions are applied to find the induced currents.
From these currents we can find the fields using the magnetic vector potential.
This is the physical optics method. The third method is GID (geometric
theory of diffraction). This method patches the geometric optics solution
with diffraction coefficients for diffracted fields from the edges of the
reflector. We will apply each one of these methods to reflector problems.

The geometric optics solutions assume that the energy flows in flux tubes in
the direction of the rays between equal phase surfaces (eikonal). These

rays are identical to the far fields of an antemna. The electric and magnetic
fields are orthogonal to the ray direction, S, and form a right hand vector
triad. Since the ray direction is found from the gradient of the eikonal
surfaces, the rays are orthogonal to the surfaces. They form an orthogonal set.

'} , T Y
Eikonal
Surfaces

The energy flows in flux tubes whose edges are rays. If the index of refraction
is constant throughout a region of space, then the rays will travel in
straight lines.

ASTIGMATIC RAY

The power flow per unit area along the ray does not stay constant because

the wavefront (eikonal) has curvature, in general. Only the special case of
a plane wave does the power flow per unit area remain constant along the ray
tube. Consider a ray and the eikonal which is a surface that is orthogonal
to the ray. The vector direction of the ray defines a plane. We can define
an X-Y coordinate system locally around the ray which is contained in the
plane defined by the ray. The Z axis is coincident with the ray. For now
the direction of the X axis is arbitrary. Since locally the eikonal or
wavefront surface is a plane, the first derivatives with respect to the X and
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Y axes are zero. Locally the surface can be approximated by a quadratic
surface which is the first three terms of a two dimensional Taylor series
expansion of L(X,y,z). In the neighborhood of the ray the Z axis dimen-
sion is given by the expression*

L
axt BXQy
Since the direction of the X axis is arbitrary, we can rotate the coordinate
system until QL
=0
oxoy

In this coordinate system the Z axis equation becomes
- L (%
e
1

fr and p, are the principle radii of curvature of the eikonal at the point of
the ray. In general P, It appears that the ray is spreading from
Fl'in one plane and fb In the“other orthogonal plane.

v 2 /
3L, L/ax f aLL'/aYL

l

When the two principle plane radii of curvature are not euqal, then it is called
an astigmatic ray,

Suppose in the figure above the areas shown are differential areas. The distance
between the differential planes is d. The ratio of the two areas is given by

@, _pi1p2
dA, P+, + D

This is also the ratio of the power densities since no power leaves the sides
of the ray tubes. Given the power density at one point along the ray, we can
find the power density at another point of the ray. Keep in mind that these
are differential areas around the ray and they have no real area in the limit.
The points where d = -p. or d = FZ’ the power density is mathematically
infinite, They are called caustics.

SPECIAL RAY TYPES

Spherical Waves - On page 29 we discussed spherical waves. A single antenna
radiates spherical waves in the far field. The geometric optics field of the
spherical wave is given by

e i

v
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r 1is the distance from the source and k (27/) ) is the propagation constant.
The eikonals are spheres and the rays are radials,

Cylindrical Waves An infinite line source will radiate cylindrical waves. They
are physically impossible but it is a handy approximation when the problem can
be reduced to a two dimensional problem, One such problem is a parabolic

cylinder. The cylindrical wave is given by efjk%

Vi
The eikonals are cylinders and the rays are radials of the cylindrical coord-
inates. The field decreases as the square root of the radius because the

power in cylindrical waves decreases by 1/R.

Plane Waves The plane wave is of constant amplitude but has the same phase
factor as the spherical and cylindrical waves, The eikonal wavefront surfaces

are planes. e“/"{/x

The field of an astigmatic ray will have the variation given by

E; e'./ikd P P
V ler ) (put )

where Eo is the field at the reference point. These rays arise when spherical
waves are reflected off surfaces and from antennas whose phase centers are not
coincident in the principle planes.

FERMAT'S PRINCIPLE

The optical path length between two points is defined as the following line

integral,
/I?OIS
<

where C 1is some prescribed path in space and n 1is the index of refraction,
n =‘ﬁ?;. This is also the phase change of the wave when multiplied by the
propagation constant of free space since the index of refraction is a measure
of the slowing of the wave in the dielectric. The path of the ray is not
arbitrary between two points.

Fermat's Principle states that the optical path length of a ray is stationary.
To be stationary means that the first derivatives are zero, that is, the
optical path length is a minimum (or maximum). Since we are not dealing with
lenses, we will take n to be a constant everywhere. The shortest distance
between two points is a straight line which means rays travel in straight lines
through a homogeneous medium. More important is that Fermat's principle also
holds through reflections (refractions also). We can use this to trace rays
through reflections by searching for the minimum optical path length.

It is possible to use Fermat's principle to find the laws of reflection and
refraction (or Smell's laws). The two laws of reflection are given as:
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(1) The incident ray, the reflected ray, and the normal to the reflecting
surface all lie in a plane.

(2) The incident and reflected rays make equal angles with the normal.

Implicit in Snell's laws of reflection is the idea that locally the wavefront
behaves like a plane wave and that the reflector can be treated as a plane.

A
n
A A
S S,

Reflector

If the three vectors in the figure above are unit vectors, we can express the
reflection laws by the vector relations given below.

(1) ix 8, -‘Ql) = 0

This expresses the law that the three vectors lie in a plane. The vector
cross product of two vectors defines the normal of the plane. The equation
states that the normals which are defined by the two vector cross products
are coincident. If two planes have the same normal, then they are the
same. This is also part of the pair of relations which states that the
angle of the incident ray with respect to the normal vector is the same as
the angle of the reflected ray with respect to the normal. The second
vector relation which defines the angle to be equal is

A

(2) R (5, +8) =0

We can use these expressions to find the reflected ray unit vector in terms
of the incident ray and the normal.

s, = § -2@8
2 T 5y -2 - mm

By symmetry we can find the incident ray from the normal and the reflected ray.

A _/\ ’\.AA
S1 = S2 - 2(S2 n)n

These last two equations state that it does not matter which direction the rays
are traced through a set of reflections. We can also get there by considering
reciprocity.

Snell's law of refraction can be expressed in a similiar vector relation as the
reflection law:

A A A
n X (nls1 - nZSZ) = 0
or n1 Sin 01 = n2 Sin 92

with the same condition that the three vectors lie in a plane. n, and n, are
the index of refractions of the two mediums.
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RAY TRACING

Tracing rays through a reflector system is conceptually straight forward. Where
a ray strikes a reflector we must find the normal to the surface. Using the
equation above, we can find the reflected ray direction from the incident ray
unit vector and the unit normal of the surface. The problem comes when we
have specified the location of the source and the field measurement point and
must find the location of the reflection on the reflector. For the general
problem we cannot find an analytical expression which will give the location of
the reflection. The usual computer technique uses Fermat's principle to search
for the minimum optical path length. We also may find that there are more than
one ray that will reflect off the reflector which will satisfy the reflection
conditions and locally satisfy Fermat's principle. The field at a point is
the sum of the rays which can reach the field point. This process can become
a difficult geometry problem.

Once we have found the ray paths, we must determine the amplitude variation
along the ray. Keep in mind that even though we discuss the spreading factor
of the ray differential area, the area of the ray remains a differential area
and has no real area. Rays remain rays and do not become surfaces. The type
of source will determine the variation of the amplitude of the rays radiating
from it (spherical, astigmatic, cylindrical, etc.). Knowing the type of ray
radiated from the source, we can find the amplitude of the ray at the point of
reflection. If the reflector surface has curvature, then the ray curvature

will change after reflection. It is necessary to use the amplitude of the ray
at the reflector and the new radii of curvature to find the amplitude along the
reflected ray. The radii of curvature of the reflected wave can be found as a

function of the incident ray curvature, the angle of incidence, and the radii
of curvature of the reflector. For most of the cases we will consider, we
can find the curvature of the reflected rays from simple geometric considera-
tions.

PARABOLIC REFLECTOR

The parabolic reflector surface is formed by rotating a parabola about an axis
through the center of the parabola and the focus. This surface will transform
the curvature of a spherical wave centered on the focus into that of a plane
wave. We say that the reflector surface has collimated or focused the wave.
In a similiar fashion the parabolic cylinder reflector converts a cylindrical
wave from the focus into a plane wave, Not only is the ray curvature changed,
but all rays from a plane with its normal coincident with the axis of the
reflector to the reflector and to the focus have the same phase length. This
plane is called the aperture plane and is an eikonal for sources at the focus.

On page 586 is a diagram of the parameters of the parabola. Since the antenna
is symmetrical about the Z axis, the problem can be reduced to a two dimensional
problem if we ignore polarization. The equation of the parabola can be given
in both rectangular coordinates and spherical coordinates.

r-= 4F (F-=2) F
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Parabolic Reflector
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F is the focal length, D is the diameter, P is the distance from the focus to
the reflector, and gl is the angle from the negative Z axis.

When considering the feed antenna which is placed at the focus, we want to
reduce the problem to a dimensionless one, To do this we will find the
subtended angle of the reflector seen from the focus which is 2 ¢' versus
the dimensionless parameter: F/D. °

Sin(/ F

. _ 0
D/2. = Sin l'”o F( 51/0) = 533—27;2
0

We can use the following trigonometric identity to reduce the equation,

Sin ¢g

2 Sin ;00/2 Cos ¢/o/2

N

D/2 =

¥

The subtended angle is twice this, An alignment chart of the subtended angle
versus F/D is given on page 588,

Tan wo/ 2 F

Tan"L(1/ (4 F/D))

]
[\

Let us find the unit normal vector, n, of the reflector. The vector can be
found from the gradient of the curve equation,

T = VE -FCoSZW/Z) = -Coszy//z §r+ Sin ¢/2 3

Normalizing this expression it becomes

ff = - Cos ¢/2 4, + Sin y/2 ay

We can use this to find the direction of the reflected ray which is incident
from the focus,
S1 = aF
The reflected wave is found the equation:
~ A~

S2 = S1 - 2(S1 *n)

~ —

S, a, - 2 Cos /2(Cos ¢/2 Ef, - Sin ¢/2 ;W )

§2 = ;f(l - 2 Cos? ¥/2) + 2 Cos /2 Sin ¢/2 E‘/’
Using the double angle formulas, this equation can be simplified.
s, = -a‘,Cos(// +a¢81n¢/ = a,

All the reflected rays are parallel to the Z axis. The second thing we need
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to find is the phase distance from the focus to a plane at the focus whose
normal is the Z axis, through a reflection. The distance from the reflector
to the aperture plane at the focus along the reflected ray path is given by

,OCOSS//

The total phase distance is ‘0 + p Cos ‘// = ,0(1 + Cos jﬂ).

(1 + gosgﬂ ) - Coszwz

2 CosY/2 = 2°F

The distance is the same for all reflected rays, 2 F, and the aperture plane is
an eikonal (an equal phase surface of the wave) for sources at the focus. In
fact any plane in front of the reflector parallel to the plane at the focus

is also an eikonal, Since the wave has no curvature, it is a plane wave.

From the geometric optics solution we see that the reflected wave is a cylinder
projected from the diameter of the reflector. But, of course, because the
wavelength is not zero, there will be some diffraction which will broaden the
beam and give sidelobes,

We have found the ray paths and an eikonal aperture, but we must also find the
amplitude distribution along the rays. The rays from the sourece at the
focus are spherical waves. At the reflector the amplitude of the ray from
an isotropic spherical source is given by

1/9

The reflector has changed the curvature of the rays to plane waves (infinite
radii of curvature). If the pattern of the source is E(¢/, @ ), then the
amplitude in the aperture plane is given by

E (r, §) = E(¢, ¢)/f>

If the feed antenna is isotropic, then the distribution in the aperture plane
will be tapered.

Ea( r) = Cos2 IP/Z

E (r) is referenced to the center of the parabola. On page 590 is a graph of
the edge taper versus F/D for an isotropic source. We see that the edge
taper is reduced for larger values of F/D and the amplitude taper loss will
be less. We will find that there will be a trade-off between the amplitude
taper loss and the spillover loss which is the energy from the source which
does not strike the reflector. Large values of F/D will increase the spill-
over loss,

APERTURE DISTRIBUTION LOSSES
We can relate the aperture field to the pattern of the feed using the equation

above and find the amplitude taper and phase error losses for the aperture with
the feed pattern. The amplitude taper loss of a circular aperture is found
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from the equation on page 576.
2T~ 2
| [T o aran
, 2T, 2 ,
T [ e, )l e dr d8
o

(]

ATL =

A 1is the radius of the aperture. The parabola parameters have the following

relations:
P =F Seczl///Z
r' = pSinf = 2 Sin¥/2 Cos P/2 ——
Cos™ ¢ /2
r' = 2 F Tan (/2
dr' = F Sec? pr2 ay = pay

We will substitute these into the amplitude taper loss equation and relate the
integrals to the feed pattern.

ar Y ,
| f f ‘___._Eﬁ?’”/zrm% pdp’ds’ /2

ra ZTI‘% / t z ' / /
T& fofo ’E(:gqs)/z/:fw%?d‘”‘”é

ATL =

f cancels out in the numerator integral and we can manipulate the expression
in the denominator integral to eliminate it.

2 F Tan §/2 = gil?‘_gﬂg. = 2 SinP/Z Cos /2 = Sin¢
f F Sec” (/2

13 gR/A

el [ (e 9)me % av'd b
7 e eyt sm v dp
We can make the substitution: a/(2 F) = Tan Y/ and eliminate dimensions.
wthy)l [ [l ATt dv 981"
T Tleasont swp dp'dt

ATL =

ATL =

This is the formula for the aperture distribution taper loss which is referenced
to the feed pattern and dimensionless.
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Phase Error Loss

The phase error loss of the aperture plane can be related back to the feed
pattern of the source in a similiar manner as the amplitude taper loss.

We can find the expression for a circular aperture from the equation on
page 573.

ZTT"

PEL =

E(ri¢)rdr d¢[
( (e, 90 rrards)”

o Yo

We can directly relate the aperture field to the feed pattern.

o S S e i T
EL = - 2

B ar ‘00 '-— 4 Vs ’ L
(Sl 2o 7o o 4446
After cancelling terms, this becomes

’[[445(4/ ¢)7§w¢/4¢’ C/?‘/
([[ 1ECY, ¢')| Tav 74 c/‘//'</55/)

The integral in the numerator can be divided into two integrals which is done
for any calculation.

(jfE ()4 Tan Vd¢’4¢) (ffg () &) Taw ¢Ady2{¢)
(fmf Se(w by Tan HL dY'dE)"

E_and E_ are the real and imaginary parts of the feed pattern which is referenced
to the focus of the parabola,.

PEL =

PEL

SPILLOVER LOSS

The spillover loss is not associated with the aperture distribution but is a
measure of the amount of energy radiated from the source which is intercepted
by the reflector. Since the gain of the reflector will be much larger than
the feed antenna, we will ignore the direct radiation of the source to the
far field. Ideally all the energy radiated by the source would be reflected
by the reflector, but this is not possible. The energy which does not hit
the reflector will be a loss. The energy which is radiated by the source is
given by the following integral over the radiation sphere.
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27

T
2
E<¢jl¢)/ smp Jdpde
° ~
The energy which hits the reflector is given by the integral:
ar_¢,

[ f 1 &) sw oy dé

The spillover efficiency (or loss) is given by the division of the integrals.

27T

[ e § sy dvds
f1775<w¢)/25f~¢d¢4¢

9 0

Spillover Loss =

CONICAL BEAM FEED LOSSES

We can use the conical beam (page 36) approximation for the pattern of the
feed antenna and study the trade-off between aperture amplitude taper loss

and spillover loss for various beamwidths and F/D of the reflector. The
feed pattern is given by

E(¢) = Cos (¥/2)

When we substitute this feed pattern into the integrals above, we can find
the spillover and amplitude taper losses.

Let X = Cos (¢ _/2)

Spillover Loss = (1 - X2(N+1?)

2 N2, 2
Amplitude Taper Loss = 4 Cot (¢Q/2) (1 -X)"/N

(1 - X2y w1

These functions have been plotted on pages 594 and 595 for various F/D and
feed beamwidths. We see that as the F/D decreases the subtended angle of
the reflector increases and more of the feed energy hits the reflector and
the spillover loss decreases. On the other hand as the subtended angle
increases (F/D decreases) the amplitude taper loss increases. There is
be a trade-off between these two. On page 596 is a plot of the sum of
the amplitude taper loss and the spillover loss., This shows that there
is an optimum feed beamwidth for each F/D. The beamwidths for minimum
loss given F/D are plotted on page 597. Both the 3 and 10 dB beamwidths
are given on this plot. The dashed curve is the subtended angle of the
reflector which is reasonably similiar to the optimum 10 dB beamwidth.

A good rule of thumb would be that the 10 dB beamwidth of the feed equal
the subtended angle of the reflector.
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Chapter 14 Reflector Antennas

PHASE ERROR LOSS AND DEFOCUSING

If the phase center of the antenna which is used for the feed is located at
the focus of the parabola, then there will be no phase error loss in the
aperture. There are some practical problems with real feeds. Some feeds
like waveguide horns will not have the same phase center in both principle
planes; it is an astigmatic source. The phase center may not be well
defined. For different angles, ¢ , the wave appears to come from different
phase centers. In general the feed will have random phase errors which may
be systematic but difficult to identify. These errors can be established by
measuring the feed pattern phase and amplitude, and the integrals given above
can be used to predict the phase error loss. There are some systematic
phase error losses which can be given.

The first systematic phase error which is separated out is axial defocusing.
In this case the phase center is on the axis of the reflector but not located
at the focus. This can happen, for example, with a log periodic antenna
feed. The phase center of the antenna will move when the frequency is
changed (see page 473). If the phase center of the antenna is placed on the
focus at one frequency, then for any other frequency there will be axial
defocusing, One method would be to put the focus at the virtual apex of

the antenna which would then give the same axial defocusing at all frequencies
in the band of the feed antenna. On page 599 is a plot showing the effect

of axial defocusing for various F/D. The conical beam approximation was
used to find these plots with the beamwidth picked to be the optimum for the
minimum sum of the spillover and amplitude taper losses, The results only
change slightly for reasonable changes in the feed beamwidth., We can see
from this plot that reflectors with small F/D are more susceptible to move-
ment of the feed antenna.

The second type of defocusing is lateral offset. If the phase center of
the feed antenna is moved off the axis of the reflector, then the beam
will no longer be on boresight when reflected off the reflector. The
phase error loss is a measure of the gain on boresight. It can only
find the gain here so it does not correctly predict the gain at the peak
of the beam. The effect of lateral offset on the phase error loss is
plotted on page 600, We can see that like the axial defocusing, the
reflectors with small F/D (large subtended angle) have higher phase error
losses than reflectors with large F/D for the same lateral offset. The
second thing to notice is that the parabolic reflector is more susceptible
to lateral offset than to axial defocusing. We can see this by comparing
the abscissa scales on the two plots.

The plots on pages 599 and 600 can be used to determine the tolerance require-
ments of the feed structure. Deep dishes (small F/D) will require closer
tolerances than shallow dishes. Many feed supports are built with adjust-
ments so that the feed can be accurately located at the focus. When
designing a broadband feed, it will be necessary to make some compromises,

A third phase error problem with the feed is astigmatism. An investigation
of this effect has been made by using the conical beam approximation for the
feed and varying the Z axis offset sinusoidally with the rotation of the

598
Fundamentals of Antenna Design by Thomas Milligan Copyright 1981



2.4

2.6

2.2

— _ - : ——
10T 2y HFHH N T - U: ;wﬂ.u_ " : o ,‘tm T . e T &
i r |- . a5y RN SR ENS 1 T AN T rT et s =t
It o
i THEAT T 1A NERRREESD” ap/| $901 |103 TN T NG : =
AR NYY S T KMH BAad RESRSRERR AN 1 Tt N =TT T e I
141 A ol A FH L A N EENP=_ ouuEn Ry SRS RENSE RENEE T g
; 3 ol AT ﬂ. § - Ta &
o SRR - + - L ; o)
T A -+ - = - L+ Emm inadiasas O]
x B a4 74 i o -
\W“‘ B .
S / -
a - Huln . 17 1 T M1 s T - 1 =
AEe3 i H g B - i
5 i i fiifgioe
& i i AiEE Has L) 1t T s

o
&
i
=L
I
i
T
T
Il
-
g
3
2
t
7t
|

1.8

T
T
1

Il
Detoechiga
PCEXOCAO LIty

h
I

I
'
A}

1.6

He ik
n ;
T~
I

N
T
P

i

\
i
i
t

1.4

=
S~~
X
\
\
\
T
A

1.2

\l
1

by 'rhom§M|IIigan

d
¢
I

1
1)
1]
U
0

QY

LT ma

E
I
I
I
Ft

] !
E, :
R
|
!
T
P
717
t
L -
t
1

&=

esign

o

magé | Be

= T T ubwl‘ ] et SR , gapaEansarEes

Chapter_14 Reffector Antennas

& VSN NI 3AVIW OO ¥3SS3 R 1344N3AM "
0CET 97 SaHONI 0f X 2 HONT 52 oL oi %01 e

Fundamentals of Antenna D



14

12

10

A4

|4

]

en

Aa‘

TTTT

TT
!
)

T

Vg

Eak

§ ol

hadEs

by
154

r Ahtey

[7s%

Chapter.]

© YSNIIGVA OO M3ISSI B 1344NaM
mmIoz_o_thUZ_XO._.o_xo_

Copyright 1981

by Thomesddilligan

Fundamentals of Antenna Design



A P ] SN A i EEEE KA L o)} ) T
ey S - 1o 4 - N
TIT T - T i
] L HHeB O X T ] L 1 R

rey
had

| by Thoﬁ\agwlligan

. ST r
T : T T :
N N Lot .
- - L L T
(&) M - RERE /7
O i ™ . 1T
o gt ~T
- - p
- T 5 1 § WAy N
. e - N
Ol |- Mw r Y -
0! ] T ] %
ERRSIRNA . I e IRAEREEE :
N . | B
S5 - ‘ . § L T
[{- 4 !
i B 1 - o e
1 L o S EEE e
- T © 1] i : ; i
b o 1
= =~
M ! T i -
- I -
it i :
E - o) N I A m -
g o ET I i
44 " Sl i ige> |l
- N . b O D D M ENEE K i
o : | 1 S !
= e A%
¥/ Thee TR T e T
WA ; En A S
i 15 O Roagl =38 bH g
Ul / \\ ] o o] o - r B
Qv - @wf = o]
- =31 + e ]

J

Chapter_14 Reflector

0CET 9t

v<,m:z_uo§.oummmmmaduu:mxU%C
S3IHONI 0L X £ HONI % OL 0L X 01 W%vh_

Fundamentals of Antenna D

Copyright 1981

esign



Copyright 1981

by Thomabtilligan

[c 0] (o0}
° TTTTT
N EEnE
b e brler i
il E N A H \
=)
~
o
o~
731 =
[V
o
D 1) il
u [ds)
o ans| bl
n )
sl fanl
TS 13
: Hi "
a.— T
y in
ﬁt
a
el 2)
5 " .
— ! e
=~ -
=
m - - U
~ =
q
. PR
- - :
H E L=t :
T \N llml od
. “_ I <ss T ] e ]
1 T s o et
pot
-,
= L i
H E e
MIN\ . 1 wiimfn
I T I =t I
© | HHEH L..xw\m.. H T - i et
; e W - >
e ” I W " -t - lllMll 5
T I g ¥
1 ] i I H
L I Lt i A !
ﬁ - i W
i I i i I
v i I I
[ ! i - , ! ==
Saasse | |
: | | :
! | I
i i i
] ] i
P ] W !
! ! | W
o
g W m |
ww W =
- - =
joi ! : $OT q
i : | |
1 J ] !
| .

Chapter..

0CET 9¥

T YV'S'NNIIGYW "OD ¥ISSI R 1344N3IAM W#V{__
S3IHONI 01 X £ HONI % OL 0f X 0l YWa

Fundamentals of Antenna Design



Chapter 14 Reflector Antennas

phi pattern axis. The results are plotted on page 602. In these results
the average phase center was placed at the focus of the parabola. We can
see from the plot that the effects of astigmatism are similiar to lateral
of fset losses, quite large. Unlike the other two types of defocusing,
reflectors with small F/D are less effected by astigmatism in the feed.
For example, if the phase error loss due to astigmatism is to be less than
0.5 for F/D = 0.5, astigmatism must be less than 0.19 wavelengths.

Another potential phase problem with the feed is random phase errors. The
same reflector and feed that was studied for astigmatism was also studied
with random errors. The plot of these results is given on page 603. Since
only a limited pattern contours could be generated, the one sigma points
are also plotted on the graph. Like all other phase error problems, deep
dishes would have higher phase error losses for a given random phase errors
in the feed antenna,

The last feed phase error problem can be the most severe. When a wide band-
width feed is used such as a horn, we must be certain that the sidelobes of
the feed are not within the subtended angle of the reflector, The sidelobes
are 180 degrees out of phase with respect to the main beam, In the aperture
plane these lobes will be 180 degrees out of phase as well. This portion
of the aperture will subtract from the central portion in the far field
radiation,. It is easy to get total cancellation somewhere in the band of
the antenna. This is one advantage of the log periodic feed for wide band-
widths. The beamwidth will remain constant over most of the band of the
feed.

RELATIONS BETWEEN BEAMWIDTHS

Many of the graphs given here are in terms of either the 3 dB or 10 dB beam-
widths. Sometimes the 6 dB beamwidth is used. We can find an approximate
relationship between the different beamwidths of an antenna by using the
conical beam approximation. If we refer to page 36, we can find new
relations similiar to the ones given there for any beamwidth level. Given
one beamwidth level and one beamwidth, we can find the exponent, N. Using
this exponent and another beamwidth level, we can find the new beamwidth.
The expressions which result for such an operation are time consuming to
calculate on a calculator. The operations can be reduced to a nomograph
which has been done on pages 604 and 605.

To use the nomograph, draw a line between the pattern beamwidth level and the
beamwidth. Note the point where the line intersects the diagonal axis. In
the example on page 604 the pattern level is 3 dB and the beamwidth is 60°.
Draw a second line from the new pattern level through the intersection point
of the first line and the diagonal axis to the beamwidth axis. This is the
pattern beamwidtg at the new level. The 6 dB beamwidth in the example on
page 604 is 84.1,

The chart can also be used to find the pattern 1eve10at different angles.
For example, suppose the pattern level is 3 dB at 30 and we want to find
the level ato40 . We draw a line between the 3 dB point on the pattern
level and 30  on the beamwidth axis and note the intersection with the
diagonal axis. Through the intersection draw another line using 40° as
the second point and read the pattern level as 5.2 dB.

601
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Chapter 14 Reflector Antennas

FEED CROSS POLARIZATION LOSS

If the feed has a substantial cross polarization component, then a cross
polarization loss must be included. We will see later that the parabolic
reflector will generate cross polarization for some feeds but the energy is
located off boresight in the secondary pattern. It is necessary to divide
the wave into orthogonal polarizations such as linear or circular to apply

these formulas.

We must back up and consider the effect of cross polarization energy in an
aperture. The formula for directivity is changed to include a cross polar-

ization component. .
£ (xv) dx d
o = y|

o [/lEc(y)Y)IL"‘ ’Ex(%ﬂ/)’?~ C/%d)/
s

E is the co-polarization component and E_ is the cross polarization component.
This is the directivity on boresight. As™before we will divide the directivity
formula up into pieces.

Directivity =

Directivity = i’f\-’—‘g (ATL) (PEL) (XOL)

ATL is the aperture taper loss, PEL is the phase error loss, and XOL is the
cross polarization loss. We will use the same formulas for ATL and PEL which
were derived before, If we assume that there is no phase error loss, then

the formula for directivity is reduced.
A
=i%’. ,f[’EQIdYQI}/I

JL1Ed™ + 161 dx dy

4T A

—;\—5 (ATL) (XOL)

Directivity =

If we substitute the expression for ATL, we can solve for XOL.

|J[1Ed dxgy]”
A fijEcllq’xd)/

[ 1E ds

/Z/E(/Lq’s +f£;5x/“</s

Above is the formula for XOL on an aperture. We need to convert this to a
formula on the feed pattern., All three integrals are of the same form.

ATL

XYoL =

606
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/[/E/ s = O/??c—-(r; 8)1° r'drd ¢’

The conversion of this integral to the feed pattern is given on page 591 in
the denominator of the ATL formula.

2 Y,

JECY, )] sw b’ dpdP

o
0

Using this formula, we can find the XOL for the feed pattern.

[ ?%Estw y 4449
L = ur "
[/(‘/%EJ‘ Flex)*) smp dydf

Another consideration we must look into with a reflector feed is the spillover
loss. Cross polarization patterns tend to be poorly defined beams and will
spillover quite a bit of the energy contained in them. Since the spillover
loss is just a measure of the energy which hits the dish, we can find the
formula from the ratio of the integrals.

21 ¢,
[ ] Er+ 1607 s b dydp

o Yo
fZFﬂ
[

2 2\
V1o 151 o dy b
o
Using the above equations, we can find the boresight illumination losses when
the feed antenna has a substantial cross polarization response. In many feeds
the cross polarization loss is very small and can be ignored.

Xa

Spillover Loss =

APERTURE BLOCKAGE

The parabolic reflector feed is placed at the focus and will block part of the
aperture and eliminate radiation from that portion. This has two effects.
First, it will reduce the gain because the energy from that part does not
radiate, The second effect will. be an increase in the sidelobes. We will
only consider central blockage because we can consider it in general.

One method of handling central blockage is to modify the integrals of the
illumination loss efficiencies. The central aperture blockage is as shown

in the figure below.
D +— =

|
- Dl__i
Aperture
i
r//////’ [\\\\\\1 Central
b Blockage

a —=
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We will want to relate the blockage to the feed pattern. To do this we can
find an equivalent F/D for the blockage. The focal length, F, is the same as

the full dish, but the diameter has decreased. The angle to the end of the
blockage is found.

W, = 2 Tan" (b/(2 F))

The integrals over the feed pattern will have a changed lower limit, ¢ _. To
find the amplitude taper loss efficiency, we only integrate over the apérture
and reduce the area factor in the denominator.

27 _«q

I[[Eq(f,¢)rdrc/¢/2
m(@*-b>) (7 (o dYodrdé
[fb/Eq(,Mrdr

Now let us relate this back to the feed pattern. We can modify the arguments
and limits of the integral by inspecting the development on page 591.

am b
4,_,2/[4 E(w,¢)mw/2c/¢/q/¢/2
ATL = e 18

(@ ”z)fzﬁ? E(y, ) smwpdvdd

The dimensions can be eliminated by making the following substitutions.

ATL =

a/(2 F) = Tan %/2 b/(2 F) = Tan ‘”B/Z
With these substitutions we obtain the final form of the amplitude taper loss
efficiency.
2T ¢, 2
/f | €GBT Y dp |
ATL =

T(Tan't/2) - Taw"(Wsr2)) f fw/zz (v, swyp dyd
2 “Ya

The phase error loss efficiency will only require a change in the limits of the
integrals. 2m_y,

_ /dlr wsl?(¢5¢»:ﬁ@v¢%é‘J¢Nj¢’]2
( f z’rque(lf, $)| Tan % dwd;b)z
7

The limits in the spillover loss are also modified to take the ratio of the
energy which hits dish and is translated to the unblocked aperture to the
total radiated energy of the feed.

PEL

608
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27 Yo 2
f“é JECY,P)| siw ¥ dydéd

8

[775 (2 ¢)l/2\SIA/W dydé

All the loss efficiencies except the amplitude taper, are changed to include
blockage by modifying only the limits of the integrals.

Spillover Loss =

The second method of handling the central aperture blockage is to divide the
problem into two parts. The blocked aperture is equivalent to the sum of
the two apertures given in the figure below.

A1 l
| ! - l + !f
| |

To find the radiated field of the blocked aperture, find the field of the
unblocked aperture and substract from it the field radiated from the blockage
aperture. This is conceptually simple but the power division in each section
must be maintained before substracting the fields. The blockage loss is more
easily found from the ratio of the following integrals.

Ifﬂj’:s Taw (¥/2) </‘¢/</¢/z_

2.
|/ mj P Tav (i) dwdd |

Two curves of the blockage loss of a Parabolic reflector feed are given on
pages 610 and 611. On these curves a feed was picked which would give the
minimum sum of spillover and amplitude taper losses. The first curve is

in terms of the percent of the diameter blocked. From this we can see that
the F/D of the reflector has little effect on the blockage loss for an
optimum feed beamwidth, The second curve is the same blockage loss only
related to the feed angle to the edge of the blocked portion of the aperture.

Blockage Loss

The second effect of aperture blockage is a change in the sidelobe level. The
pattern of the full aperture will have a narrow beamwidth, but the pattern of
the blockage will be broad in comparison and will cover the first few sidelobes
of the full aperture pattern. The blockage pattern will substract from the
main beam of the fullbaperture giving lower gain, but it will add to the first
sidelobe which is 180  out of phase with respect to the main beam.

On page 612 is a pattern of a parabolic reflector with and without central
blockage. The first sidelobe has been raised 4.5 dB by the blockage. The
second sidelobe was lowered because it is in phase with the main beam and

609
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Chapter 14 Reflector Antennas

out of phase with the blockage pattern. A curve showing the effect on the
sidelobes as the blockage is increased is drawn on page 6l4. All three cases
are for a feed which will have minimum spillover and amplitude taper losses.
The reflectors with smaller F/D have smaller sidelobes for the optimum feed.
The feed pattern is down about 10 dB in the direction of the edge of the
reflector in all three cases, but we can see from the curve on page 590 that
the reflectors with smaller F/D have a greater taper across the aperture for
the same edge level of the feed. The greater taper reduces the sidelobes.

The struts which hold the feed in place will also block the aperture and raise
the sidelobes. These can be handled by modifying the integrals to exclude
these regions from the calculation. In the case of the amplitude taper loss
these areas will also have to be excluded from the area calculation in the
denominator of the formula.

The problems with the feed blockage can be solved by using an offset feed.
The reflector still has its focus at the feed, but portion of the reflector
which would be projected on the feed is eliminated. These are used when
low sidelobes are needed or when the feed structure is large.

The curves on pages 610 and 611 point out the importance of the feed pattern
in the direction of the reflector edge. This is more clearly demonstrated
by the curves on page 615. These show the ratio of the gain of the central
portion of the aperture relative to the total aperture. The abscissa is in
terms of the feed angles. The beamwidth for each F/D has been picked to give
the minimum sum of the spillover and amplitude taper losses. There is about
a 10 dB taper in the direction of the reflector edge.

Take for an example a reflector with F/D = 0, 5 The half subtended angle is
found from the alignment chart on page 583: 53°, From the plots on page 615
Weocan see that one half of the gain comes from the feed angles from 41

53 The half power beamwidth of the feed is 60°. The level of the feed
pattern at 41° can be found by using the nomggraph on page 604, It is 5,7 dB
down from the peak. Over the region from 41° to 53 , the average feed
pattern level is 7.5 dB below the peak, but still half the gain of the
reflector comes from this region., If the diameter of the reflector is
doubled, then the gain increases by the square of the diameter or 6 dB. We
would expect that half the gain would come from the central 70.7% of the feed
pattern if it were uniform, but because there is an amplitude taper, it

comes from 74%. Having a 10 dB taper across the feed pattern did not alter
much the effect of the outer portion of the reflector on the total gain.

613
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Chapter 14 Reflector Antennas

ALTERNATE GAIN CALCULATION METHOD

The usual method of finding the gain of a parabolic reflector is to find the
directivity from the feed pattern and subtract from it the spillover loss
(in dB) and the feed antenna efficiency (in dB). The reflector is assumed
to be 100% efficient. The directivity is the gain of a uniform aperture of
the projected area of the reflector (47A/)*) times the amplitude taper loss
efficiency and the phase error loss efficiency.

Gain = Directivity (SPL)rzf

SPL is the spillover loss efficiency amd n_ is the feed efficiency. We can
combine the two formulas into one. First convert the directivity formula into
one involving the feed pattern angles.

2 _q

2
_ /[[Eac(r)¢)rdrd¢/

/7(754¢(r,¢)lz+ 1E,, (h)] ) rdrdd

N

Directivity =

N

Ea is the copolarized electric field in the aperture and Eax is the cross
poiarized field. We made similiar integral conversions on page 591. Follow-
ing the development given there, the directivity formula can be found in terms
of the feed pattern. a7y

(-]

2
ot ||| EH BT (Y) dpds |
T et 1w Iy dvdb

Directivity =

If we multiply this by the spillover loss efficiency given on page 607, then
we can see that the denominator of the directivity formula will be cancelled
by the numerator of the spillover loss.

2 Y ,
e £2 )[ZE‘(W)"SWZM(%) dpdt| 1,
2 2 T 5
: /f(l/i(%¢)/2+/5x(w, )swi dy dp

Gain

The denominator is the power radiated by the feed antenna if multiplied by the
impedance of free space. This is the formula for the gain at boresight, which
may not be the peak gain if the feed has lateral offset from the focus. On page
569 we find a formula for the directive directivity which indicates the

changes needed to modify the boresight gain to get the directive gain formula.

616
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Chapter 14 Reflector Antennas

2T _ (Y

rsm@ <os(b-¢)
477 (14 Cos 6) F7 7 // EY qS)ﬁM(W/) GJ/B /
Gain = [ /3

dy'dé.
A% 2T / > —
e T 168l sy

converted by the formulas on page 591

The phase factor is in terms of the radial factor of the aperture which can be
near boresight, we can let Cos 0

. Since we expect that the gain will be
=]_.

4§BF72M%7/5WV4<35(¢ '¢)
Gam (6, 9) = ’5"'F'Zr /E (v, )T %:) €’ ¢/d¢$/
’ br a

[ Joewa) ¢ 15l ) sw 'y di,

This is the gain near boresight from the feed pattern referenced to the focal
point of the reflector. Given a measured feed pattern, we can find the far
field gain pattern near boresight.

Let us separate out a feed cross polarization efficiency.
2 7T

(XOL ///E (4e)] sw¢/d¢4¢
>’C . Jdyd g
/_/(/E (%45)/ + 15,4 b)] )s,uy/ Y

We can then express the gain with this efficiency.

Y, ) 'zlgpmu%SNG cos($-¢) 2
Cams - /677/:2/,?()(04)# / [ [ E.(4,4)Ta") €’ 4¢</¢</
= z 2 2
A [ iEcudlismp d9d s,
)

The efficiency of the feed antenna is the gain divided by the directivity of
the feed antenna.

2,

Ga:i.nf Gain / (/EI + /Ex‘ )S’VWd(f/d¢
T = =

Directivity

4mE ¢ (max)

The product of the feed efficiency and the feed polarization efficiency is
k2 o/
2
Gain // 1E. “sm ¢ dydd
- f Yo Jo
Te@oL)e =

4m Ec (max)

We can identify this as the gain divided by the feed directivity found by
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Chapter 14 Reflector Antennas

ignoring the energy in the cross polarized component. We can call this
efficiency: /7 c* When finding the gain of the reflector from the feed
pattern, it is not necessary to measure the cross polarization pattern to
get accurate results, The cross polarization efficiency is included in the
normal efficiency of the feed.

The gain formula can be separated into the usual illumination efficiencies and

the spillover loss. 4
/ zﬁ' 2smpdpdd
ZF 77Ec/25/a/;ﬂ d¢/4¢
1/

rh ‘ ¢ P 2
Cb7—%qayé)/,ZTJZP/EQ(¢C:¢9/ 'ZZN(¢9£)<1¢/<ﬁé/
2 Y
T[] te, @1 swy'dp'ds

o

Spillover Loss =

ATL

If we use these equations above for the for the efficiencies, then the phase

error loss efficiency becomes
J2BFTAN Y Siv6 cos(f-4)

/[Zw"/_:m &) Tan(¥%) € dfﬂ'dgﬁc/z
/o/w {(/4/:1(%’ b)) T(Y%) d{ﬂ’a’gS()Z

This phase error loss efficiency is no longer just at boresight, but at a
general angle (0,§). The division of the illumination losses in this manner
is arbitrary but at least most of them remain the same.

PEL(0,0) =

7>
Gain(0,9) = j;f- ’7fc(SPL)(ATL)(PEL(9,¢))

If the cross polarization secondary pattern is wanted, then the cross polar-
ization pattern of the feed needs to be measured. The efficiency of the feed
antenna will be the same for both polarizations since it is a measure of the
material and input reflection losses which are the same for both polarizations.
It is not necessary to measure the gain of the cross polarization component,

7fx - qf(XOL)fx

(XOL) .., the feed cross polarization efficiency, can be found from the ratio
given on page 617 by substituting E_ for E in the numerator. 7f is the true
efficiency of the antenna which can’be foufid from the formula

7¢(dB) = p. (dB) - Dir_.(dB) + Dir_(dB)

Dir is the true directivity and Dir 1is the directivity found by ignoring the
cro§s polarization component, ¢

618
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The efficiency: qfx can be found from ch and various directivities,

qfx(dB) = qfc(dB) - DircT(dB) + Dirc(dB) + DirXT(dB) - Dirx(dB)

Dir is the true directivity of the cross polarization component and D1r is
the 31rect1v1ty found by ignoring the copolarization component,

We can combine these formulas for the directivities and obtain the difference
between the two efficiencies as the following integral ratio.

IN d
'fo(dB) - ,7fc(d3)' = 10 Log /}/!E (‘ﬂ,¢) S v dpdé
f / 1E.(ug)| smpdydP

FEED SCANNING

The beam of the secondary pattern can be scanned a few beamwidths by moving
the feed off the axis. The problem can be handled by using the phase error
loss term given on page 618. Suppose the feed has been offset from the axis
by a distance, d, along the X axis. We can measure the angle from the vertex
of the parabola to the feed relative to the axis.

d=F Tan(}/s

The amplitude distribution on the reflector will be nearly the same when the
feed has been moved slightly and we can ignore any change. The movement will
introduce a phase factor in the feed pattern when referenced to the focus.

- IBd Sln(// Cos 0c
This assumes that the feed was moved along the negative X axis.

To find the effect of the scanning of the feed, we will restrict our attention
to the pattern along ® = 0. The phase error loss becomes

EY ) Tan JBFcos (2Tan (%) 58 - Taw ¥ S/A/W) 2
[ Fewnag e i)

(/ Wewc)/m(%) Iy d4)’

The beam peak occurs when this factor is a maximum. The equation can be
simplified if there is no dependence on ¢ in the feed pattern.

m
'O/GJUCOS¢cd¢( =Z7T~7o-(a)

619
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The phase error loss becomes
3 2
| [ E@)7awn(%) 5 (87 2T () 56 - Taw b sw#)) 4 g
( [ “iew) 7w (%)dp)

PEL

The conical beam approximation will be used to obtain approximate results, but,
of course, the integral will have to be evaluated numerically. On page 621 is
a plot of the secondary pattern of a reflector which has been scanned about
two beamwidths by moving the feed. The unscanned pattern has been drawn for
comparison., The beamwidth of the feed antenna has been picked to give a
minimum sum of the spillover and amplitude taper losses. The unscanned pattern
is very similiar to the parabolic distribution pattern given on page 559. The
gain of the scanned pattern has decreased slightly (0.13 dB) but the beamwidth
has not been effected much. The most significant change has occurred in the
sidelobes, The level of the sidelobe toward the axis of the reflector has
increased by 8.3 dB while the first sidelobe away from the axis has become a
vestigial lobe. These are called coma lobes. They are not new sidelobes but
merely have become unequal. Coma is one of the standard optical aberrations
and is due to a cubic phase error term in the aperture.

As the beam is scanned even further, the pattern becomes more distorted. On
page 622 is a plot of the secondary pattern which has been scanned about

4,76 beamwidths. The first sidelobe away from the axis has merged into the
main beam and the sidelobe level has increased to 13.5 dB. Notice the
amplitude at zero. The loss is 38 dB which is the value that is given by

the standard phase error loss formula on page 592, Even the curve on page
621 has 24 dB phase error loss for the scanned beam. These patterns explain
the curve on 600. The phase error loss increases rapidly as the first null
is approached when the beam is scanned by the feed position and there will be
a cycling through the sidelobes as shown on page 600, 621, and 622, The true
loss of the feed scanned antenna is 0.81 dB.

BEAM DEVIATION FACTOR

Since we are dealing with a large aperture antenna, the beamwidth will be small
and we can make the following approximations.

¢, = Tan ;ﬂs and © = Sin 6

The pattern scale becomes: Zﬂ‘/Tq- e
and the offset phase factor becomes: 277;% Ys

On the plot on page 621 the offset phase factor, 27’%’Tan.¢', is 8 and the beam
peak, 277a Sin Qm, is at 7, If we use the approximations, then the ratio of
A

620
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Chapter 14 Reflector Antennas

the offset angle to the maximum beam angle becomes
Qm/g//s = 7/8

This ratio is called the beam deviation factor and is a measure of the incre-
mental change of the beam direction with respect to the feed angle relative
to the vertex.

Qn = BDF gg

If we had a flat reflector, then the beam deviation factor would be one: angle
of reflection equals angle of incidence. For a concave reflector BDF <1 and
for a convex reflector BDF>1l., On page 624 is a plot of the beam deviation
factor versus the F/D of a parabola. The curve has a slight dependence on the
beamwidth of the feed. This curve is for about a 10 dB feed taper. If the
feed taper is increased, it is equivalent to increasing F/D since the outer
portion of the dish will have a less effect. The beam deviation factor will
be greater for more feed taper.

The peak of the beam will decrease as it is scanned. On page 625 is a plot

of the scanning loss in terms of the beamwidths of scan for various F/D., From
this we can see that reflectors with larger F/D can be scanned further for the
same loss,

For an example let us look at the pattern for a scanned reflector with F/D = 0.5
that has 3 dB of scanning loss. On page 626 is this plot. If we compare this
pattern with the one on page 622 for 4.76 beamwidths of scan, we can see that
the main beam pattern has broadened some more, but it has the same general
shape. The pattern on page 626 is scanned 9.5 beamwidths. The sidelobe

level continues to rise and is now only 8.5 dB., The pattern shape is quite
degraded.

On page 627 is a plot of the sidelobe level of a feed scanned parabolic
reflector versus the beamwidths of scan. The sidelobes rise with increased
scanning. Like the scanning loss, the sidelobe level changes the least for
high values of F/D. The initial sidelobe level is dependent on the aperture
distribution, but it will increase as the antenna is feed scanned.

AXTAL DEFOCUSING

By using the alternate gain calculation method and the generalized phase error
loss derived for any scan angle, we found that the losses given on page 600

for lateral offset were not reprentative of the real loss because the beam

had been scanned and the plot is for boresight phase error loss. Is the plot
on page 599 for the axial defocusing representative or has the peak of the beam
moved off boresight? On page 628 is a plot of the secondary pattern of the
reflector when there is axial defocusing of the feed. The patterns are symmet-
rical about boresight which would be expected, but it appears that the losses
are real, For large offsets the beam starts to bifurcate but the loss is still
on the order of 10 dB. Axial defocusing shows in the lack of deep nulls between
sidelobes,

623
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Chapter 14 Reflector Antennas

PHYSICAL OPTICS

Another method of finding the far field is to obtain the currents induced on
the reflector by the feed antenna radiation and using the magnetic vector
potential to find the fields. If we could find the exact currents on the
reflector, then the exact solution could be found. We could find various
approximations by expanding in a Fourier series using plane wave or spherical
wave eigenvalue solutions to the boundary value problem. This would involve
infinite series which would be truncated to a few terms for evaluations. We
will take an even simplier approach. Geometric optics (ray tracing) will be
used to find the fields at the surface of the reflector. The fields will
induce currents on the surface. Using these currents, the far field will be
found through the magnetic vector potential.

Consider a plane wave incident on a flat conductor. From the boundary conditions
given on page 153, we know that the fields inside the conductor are zero and that
the tangential electric field is continuous across the boundary. The tangential
electric field at the boundary must be zero. The electric field can be zero only
if there is a reflected wave 180° out of phase with respect to the incident wave
at the boundary. Suppose the incident wave is polarized in the X direction; H

is the Y direction, for a wave traveling in the Z direction. The reflected wave
will be in the negative Z direction with the electric field in the negative X
direction at the surface. For a wave traveling in the negative Z direction with
the electric field in the negative X direction, the magnetic field, H, will be

in the positive Y direction. The field at the surface of the conductor is the
sum of the two waves with the electric field zero but the magnetic field double
the amplitude of the incident wave. From the boundary conditions given on page
154, we find the surface current induced on the conductor.

K = n X 2H,
s i
ﬁi is the incident wave magnetic field and n is the unit normal of the reflector.

The parabolic reflector is not a flat reflector, but if the radius of curvature
is much larger than a wavelength, then the surface currents will be approximately
the same as for a flat reflector. This is the first term of an asymptotic expan-
sion. We do not have to assume that the reflector is parabolic; it can be any
shape which has large radii of curvature relative to a wavelength. The physical
optics approximation can be used for any reflector shape. We have assumed that
locally a wave is reflected from a surface as it were a flat plate conductor.

The reflector is in the far field of the feed antenna. Since we assume that it is
the far field of the feed, the magnetic field can be found in terms of the electric
field.

— 1 = —
=7 S1*h

S, is the incident ray direction and # is the impedance of free space. The surface
current can be found in terms of the incident electric field by using this assump-

tion that the reflector is in the far field of the feed and the above equation for

the surface current in terms of the magnetic field.

X = —E—(Kx (§1x§i))

s 7
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Chapter 14 Reflector Antennas

Similiarly, the surface current can be found in terms of the reflected wave
electric field, Er’ and the reflector wave ray direction, Sz.

R = @x G, xE))

There will also be a surface charge induced on the reflector surface for waves
at oblique incidence.

CT'S= Ze(n-Ei) = 2€(n-Er)

Since this charge does not radiate in the far field, we will not be concerned
with it.

Given the surface current, we can find the magnetic vector potential. (pp. 122)

_ R o IKIx -
A =ﬂ = ——— 4as
S 471t - 1

The far field is found from the vector potential (pp. 124).

E=-jWyA

The aperture field method is restricted to analyzing reflectors which focus the

wave from the feed, whereas, the physical optics approximation can be used with
shaped reflectors.

The gain pattern of the feed antenna is found from a formula similiar to directivity.

_ 47 P, #)
$)= =5

-

G (¥

P, is the total input power and P(¥ ,p) is the power pattern per unit solid angle
(fadiation intensity). The power pattern is related to the electric field on a

unit sphere.

2

Using the two formulas above, we can find the electric field on a unit sphere from

the feed antenna. VA
. B
gl = [ 6w

If we include polarization, then the electric field becomes

E#) = [Z";?][W 3,3, + (G 8 By To |

é@and g%»are the normalized phased factors of the two polarizations, and Gy and
G¢ are the gains to the two far field polarization components.

630
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Chapter 14 Reflector Antennas

Suppose we ha&e a parabolic reflector, then the electric field at the surface
of the reflector is given by

Ec(48) = e f’[ T’?] [,/6 98 3Ty + G ﬂ%]

The incident wave vector for a feed at the focus is @, and the unit normal to
the reflector is found on page 587. Using these we can find the surface currents.

/‘(;z _g-.(&'f,sw%E.’y + @ycos Yy Ey + Qpcos E‘f‘)
EW and E¢ are given by the follow1ng expressions.

f)
Ey = e,i 7 —-—"Gsuw)f%w(w) Ep = e’ [Z2 Gy, «s)] $,.9)

The phase of the feed radiation will be a function of the feed angles and polari-
zation as shown. The surface currents are given in terms of the feed pattern
unit vectors (f’,¢’, @) and cannot be integrated because they change direction
with location on the reflector surface. These must be changed to an invariant
coordinate vector system such as rectangular. The X axis will occur when @ =

The following scalar products relate the two coordinate systems. Note that the

Z axis of the feed coordinate system is the negative Z axis of the secondary
pattern of the reflector.

ap- a_ = Sin ¢ Cos ¢ ayea = Cosf Cos ¢ aga, = - Sin )
ap Zy = - Sin¢ Sin @  ay- Zy = - Cos{ Sin @ Z¢-Zy = - Cos @
af'az=—Cos(1/ a‘(,-az=81n§1/ a¢°az=0

The (X, Y, Z) coordinate system is with respect to the secondary pattern coordin-
ates. If we substitute these relationships into the above equation for the
surface current, after some manipulation, we get the currents in terms of the
feed pattern in rectangular coordinates.

/—(;= -;—"(COS% (2 (cos¢ Ey —Swg E¢) -a, (s Ey + cos g E,g))
+ Ty Ey SW {%_)

If we restrict our attention to small patterns angles, then we can project this
current on to the aperture plane. The phase of the current on the aperture plane
will then only be a function of the feed pattern. When 6 is small, then E, due
to the Z component of the current will be small and can be ignored. This is the
same as the null portion of the dipole pattern.

We will now look at particular feed antennas and their corresponding surface
currents and fields in the aperture plane. By proceeding with this analysis we
will obtain the cross polarization lobes of the parabolic reflector which have
become called Condon lobes after their discoverer.
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Chapter 14 Reflector Antennas

SHORT DIPOLE FEED

If the feed is a short dipole at the focus in the X direction, then the field at
the reflector can be found from the magnetic vector potential.

A = Z%%; o Jkr Zk

E = -jemA = —jedIl  -jkr —
Ly X

Ey = _iZ:%I:L e"jkr Cos ¥ Cos @

E¢ = J%é%%&, e—jkr Sin @

We can use the formula on page 631 to find the surface currents on the reflector.

+ Ay, siwgcos ¢ (r-cos 1/'))

We can project this current into an aperture electric field which will remove the
phase factor, _
Xs 1

E = - ———
2 Cos ¥/2

a

Eq-: J:’;;‘:f (Ex(cosWCOS% +5N2¢) _,_Zyswqﬁcascﬁ(/—- cos {b))

The aperture field for a short dipole has been drawn on page 633 for F/D of 0.3
and 0.50. Notice that fields have a Y component when the point is removed from
the E and H plane axes of the aperture. These Y directed components will give
cross polarized lobes in the secondary pattern. Second, notice that the reflector
with an F/D of 0.3 has greater Y components. Deeper dishes (smaller F/D) will
give higher cross polarization lobes (Condon lobes). The fields in the aperture
plane are given schematically below.

632
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Chapter 14 Reflector Antennas

Aperture Fields with Short Dipole Feed
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Chapter 14 Reflector Antennas

If we consider the pattern along the E plane or the H plane, we can see that
the Y component is exactly cancelled at the same location on the aperture about
the line of symmetry in these two planes. There is no cross polarization
component in these two planes from the short electric dipole. In the plane
which is 45° with respect to the E plane or H plane, the cross polarization
components are in the odd mode and will give a difference pattern in the far
field. We will find the maximum cross polarization lobes in this plane which
is defined by @ = 45°.

SHORT MAGNETIC DIPOLE FEED

We will align the magnetic dipole with the Y axis so that it will also give a
field in the aperture which is aligned with the X axis. The field can be found
from the electric vector potential.

/E:= ——fM'e Q‘J'kr a)/

4mrr
— —_ MP _jKr,
= . - JWE——2¢ a
H = "J weF = Jw Lrr /
= weMl -k = _ e ML jKrcps
Hsu = “Jwem QJ COS‘«I/ 5/“‘# #4: = ‘/wéZHTr e co ¢
The far field electric field is found from the magnetic field by assuming spherical
waves. _ H
E%y‘z Q{4¢ £E¢ =—nhy
' . MY - kr
_ ML k" = e o/ Cos{ﬂSNS‘S
Ep = ~j@wsN =@ cosp  Ep =y NS

We can find the surface currents from the equation on page 631.
/‘(; = —jwe _;2_1_5_;(_. G"jkfco.s % (@ (cos'd + <cosf sw)
f - &, s Cos¢(/-Cos¢))
This surface current can be projected on to the aperture plane as before.

The distribution of the electric field in the aperture is drawn on page 635. Like
the short electric dipole distribution, the electric field in the aperture due

to a short magnetic dipole has curvature and a Y component when off the E or H
plane axes of the aperture. Second, the deeper dishes have greater curvature

than shallow dishes and will have higher cross polarization lobes for this feed.

A simplified diagram of the fields is given below.

Fundamentals of Antenna Design 634 by Thomas Copyright 1981



Chapter 14 Reflector Antennas

Aperture Fields with Short Magnetic Dipole Feed
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Chapter 14 Reflector Antennas

Like the aperture pattern of the short electric dipole, the patterns along the

E plane or H plane have cancelling Y components of the field at the same location
across the lines of symmetry. There is no cross polarization component in
either the E or H planes of the secondary pattern. In the 45° plane there will
be a difference pattern which is also called the Condon lobes.

HUYGENS SOURCE FEED

The Huygens source is the combination of an electric and magnetic sources which
are in the same ratio as a plane wave.

M=7I

We can combine the formulas for the two types of sources giﬁen above and we get
the following aperture field.

E = jemld &
Ea. 4Tff x(l+Cas¢)

In this aperture field there is no Y component and the far field will not have
cross polarization lobes. A Huygens source such as a horn will give a secondary
pattern without Condon lobes. Of course, a horn will not be a perfect Huygens
source and there will still be some cross polarization in the secondary pattern.

FEED POLARIZATION

A feed which is a linearly polarized Huygens aperture feed will give a secondary
pattern without Condon lobes (cross polarization). An aperture which is polarized
in the X direction has a far field which is given by the following components.

Ey = E_ Cos ) E¢ = - E_ Sin 1)
We can define the cross polarization component to be due to an aperture field
in the Y direction.

E9 = Ex Sin @ E¢ = Ex Cos ¢

EC is the co-polarized component and EX is the cross polarizaed component.

We are ignoring the factor Cos O which is due to an obliquity factor of the flat
aperture. The components which are measured on the feed antenna are E, and E,.

We can solve the above equations for the co-polarization and cross polarization

components from the measurements.

Eg Cos § - Sin @ Ec

LE¢‘ -Sin @ Cos @ LE

- - b - -

Cos @ -Sin @[ | E

: l
c
E_ ] +Sin @ Cos @ | By

This definition of co- and cross polarization for the feed will give secondary
patterns which are linearly polarized in each direction. This corresponds to
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Chapter 14 Reflector Antennas

Ludwig's 3rd definition of polarization. (""The Definition of Cross Polarization",
A. C. Ludwig, IEEE Trans. on Antennas and Propagation, January 1973) If we use
this definition of polarization for the feed, then we do have to use surface
currents to find the secondary cross polarization pattern but can use aperture
theory on the parabolic reflector. For a shaped reflector we must still use

the surface current method or a ray tracing technique such as GTD.

REFLECTIONS FROM CONIC SECTIONS

We can make reflectors from any of the conic sections. We have already discussed
parabolic reflectors, but we can also make reflectors using ellipses or hyper-
bolae. These can be used with spherical waves when the two dimensional figure
has been used to define the reflector by rotating about its axis or with cylind-
rical waves by moving the two dimensional figure in the Z axis direction to
define the surface. The ellipse and hyperbola are useful as subreflectors in

a two reflector antennas because they can change the focal point of the spherical
waves. Because they do not have a well defined far field, they are not used as
primary reflectors.

We need to review the geometry of the conic sections. All these conic sections
can be described by the same polar equation.

. e P
1 - e Cos O

(r, 8) are the polar variable. P is the distance between the origin, which is
also the focus, and a line called the directrix; e is the eccentricity.

e=20 Circle
e< 1 Ellipse
e=1 Parabola
e>1 Hyperbola

The polar equation becomes undefined when e = 0, but we will not consider this
case (r = constant). The general curve is defined in the figure on page 638. As
drawn this is part of an ellipse. The ratio of the distance, Ty from the origin
to a point on the curve to the distance from the same point on the curve to the
directrix is the eccentricity.

The ellipse is a closed figure with two focii. The curve is defined as the sum

of the distances from the two focii is equal to a constant which is greater than
the distance between the focii. The minimum and maximum distances from the origin
are given by

_ e P _ e P
Rmax T 1 - e Rmin 1+ e

The distance between the focii is the difference, which is named: 2c.

2 e

- e

637
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Chapter 14 Reflector Antennas

The total width of the ellipse is the sum.

R +R.=2a=iﬂ
max min 2
1 -e
The maximum Y dimension can be found by differentiation of an expression for Y
as a function of 6.

_ . _ _e P Sin 6
Y(8) = R Sin 6 = 1 -6 Cos ©
%% = e P (Cos 8 - e) = 0 Cos 6 =e
(1- e Cos 9) max
. _ ekP Sin(Cos_le)
max 2
1 -e

2 eP Sin(Cos_le)

1 - e2

The width the ellipse is giﬁen the symbol: 2b =

If the ellipse is centered between the two focii, then the equation for the ellipse
in rectangular coordinates becomes:

We will find the polar reprensentation more convenient.

On the top of page 640 is a plot of an ellipse. If we place a source at one

- of the focii of the ellipse, then the surface will reflect the waves into the
other focus as shown. If the source is a spherical wave, then we assume that the
figure is an ellipsoid. For cylindrical waves we assume that the figure as been
moved along a Z axis out of the paper to define the surface. If we generalize
the ellipse into the other conic sections, we will see the same effect. Consider
the equation for the distance between the focii. If we take the limit as the
eccentricity, e, approaches one, then the distance, 2c, approaches infinity.
The curve becomes a parabola and we can say that a source placed at one focus
reflects off the surface to the other focus. Suppose we have a source at infinity
on the other side of tha parabola as shown in the middle figure of page 640. Since
the surface is convex, the reflected wave will diverge. Infinity on the positive
X axis is the same point as infinity on the negative X axis. The wave will be
reflected into the focus. But since the wave cannot reach the focus, it will
become the virtual focus of the wave. The plane wave is converted into a spher-
ical wave with the center at the focus.

The eccentricity, e, of the hyperbola is greater than one. The distance between
the focii becomes negative. We could consider the distance between the focii as
having grown to infinity as e approached one and then rotates to negative as e
becomes greater than one. On the bottom of page 640 are two drawings of one
side of the hyperbola. Because the surface separates the two focii, if a source
is placed at one focus, the reflection will be a spherical wave with the virtual
focus at the other focus. The hyperbola converts a spherical wave from one of
it focii to a spherical wave from the other.

639
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Ellipse

NN,

Hyperbola
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Chapter 14 Reflector Antennas

DUAL REFLECTOR ANTENNAS

Dual reflector antennas have been derived from their optical telescope counter-
parts. The most often used dual reflector antennas are the Cassegrain and
Gregorian reflector systems. Both of these have the effect of increasing the
effective focal length of the reflector without physically increasing it. The
Cassegrain antenna uses a hyperbolic subreflector while the Gregorian antenna

has an elliptical subreflector. Since both conic sections can be described by

the same polar equation, we can deal with both at the same time. The main reflect-
or is still parabolic.

The hyperbola and the ellipse have a finite distance between the two focii. If a
source is placed at one focus, then the reflector will focus the wave into the
other. We will place one focus of the subreflector at the focus of the main
reflector. The effective feed is then at the other focus of the subreflector.

A diagram of the Cassegrain antenna is on page 642. A spherical wave from the
feed point when reflected from the hyperbola has its curvature changed to a wave
with its radius of curvature at the second focus of the hyperbola which is
located at the focus of the main reflector. 1In the case of the Gregorian
reflector system which is drawn on page 643, the spherical wave from the focus
is refocussed into the second focus by the subreflector and becomes the focal
point source for the main reflector.

In both diagrams on pages 642 and 643, the effective F/D has been increased from
0.3 to 1.0. 1In terms of the feed pattern the reflector is analyzed by using the
effective parabola as shown in the diagrams. The half subtended angle of the
main reflector is given as % , but the effective subtended angle at the feed
point is 8 . The eccentricity of the secondary reflector is found from the
following formulas.

Cassegrain Gregorian

sinCs( ¢ +6.)) sinCs( ¢, - 8,))
~ sinC:(y, - 6)) ¢ T snGE(g, * )

Hyperbola Ellipse

We can also find the eccentricity from a magnification factor. The ratio of the
effective focal length of the system to the actual focal length of the reflector
is the magnification.

m = Fe/F
Cassegrain Gregorian
_m+1 . 1
m-1 m+ 1

The magnification factor is used to establish the eccentricity of the subreflect-

or and one focus of the subreflector is located at the focus of the main reflector
but we must still locate the second focus and feed point of the subreflector. The
distance, 2c, is given on page 637.

641
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Chapter 14 Reflector Antennas

Cassegrain Gregorian
2 e2 P 2 e2 P
2¢c = — 2c = —
e” -1 1 -e

We now have an arbitrary factor, P, which can be selected. In some applications
we may want to select the distance, 2 c, to be equal to the focal length of the
main reflector so that the feed structure can be located behind the main reflector.
Two reflector antennas are usually limited to large apertures where it is conven-
ient to place the receiver or transmitter behind the main dish and avoid a long
run of cable to a prime focus feed. This will not usually be the optimum gain
location for the feed. We can easily solve for the length P in terms of the
distance: 2c.

Cassegrain Gregorian
2c(e2 - 1) _ 2c(l - ez)
P=== P===
2 e 2 e

APERTURE BLOCKAGE

.The secondary reflector will be a substantial central aperture blockage. We can
use the results on page 607 along with the effective focal length to find the
effects of aperture blockage. The plot on page 610 shows that the F/D of the
effective reflector is only a minor factor in the loss. It would appear that
the smallest possible secondary reflector would give the best solution. The
subreflector must be at least a few wavelengths in diameter before the geometric
optics approximation applied here can be used. There is however another factor.
Because the overall reflector system seen from the feed has a large F/D, the
feed must have a narrow beamwidth or the spillover losses will be large. To
obtain small beamwidths, the aperture of the feed must be large in wavelengths
and is not a point source. The feed antenna can become a source of aperture
blocakage. The blockage of the source is shown on the ddiagram on page 645

along with the subreflector blocakge. An optimum solution would have the

two blockages equal. For the case shown, the feed should be moved closer to

the subreflector which would reduce the factor: P and the size of the sub-
reflector. The required size of the feed is dependent on the frequency and

the F/D of the reflector, so it is not possible to find the optimum independ-
ent of frequency. Each case must be solved independently.

Example: Design a 10 m. main reflector Cassegrain antenna given a main reflector
F/D = 0.3 and the required F/D = 1.5 to operate at 3.9 GHz. Minimize the
aperture blockage.

Using the ratio of the F/D, we find the magnification factor and the eccentri-
city of the subreflector.

m=1.5/0.3 =5 e=ntl =§

e = 1.5

+ 1

-1

The effective subtended angle at the feed is found from the formula on page 587.
o = 2 Tan '(1/(4 F/D)) = 18.9°

o

Fundamentals of Antenna Design by 1%)4mas Milligan Copyright 1981



Chapter 14 Reflector Antennas

The feed antenna will be a circular corrugated horn with a 10 dB beamwidth

equal to the subtended angle of the subreflector. The maximum aperture phase
deviation in wavelengths will be picked to be 0.5 which is close to the

optimum design. The obliquity factor must be found before the universal pattern
curves can be used.

1 + Cos(18.9°)
2

= .973

The required pattern level to design from is .1/ .973 = 0.325. From the
curve on page 292, we can find the radius of the horn aperture.

27TA
A

A =0.0769 m A= .1774 m (7 inches)

Sin 8 = 4.7 A A=2.3)

In this case we should not ignore the thickness due to the corrugations. The
radius will be increased by 3/8\

(feed radius) A = 2.74 = .2077 m (8.2 inches)

It only remains to pick the distance, 2c, between the focii of the subreflector.
The half subtended angle of the main reflector and also the subreflector seen
from the virtual focus is 79.6°. The radius of the blockage due to the sub-
reflector is given by the following.

e P Sin(180° - ¢g)

1 - e COS(ISOO _ VO) = 1,161 P

Y(4)=

To find the aperture blockage of the feed, we must find the projection of the
feed on the main reflector.

o = Tan 1(0.2077/(3.6 P))  2c = 3.6 P
The value Po of the main reflector is twice the focal length.

Po = 2(F/D) D = 6 m.
P Sin(180° - )
1 - Cos(180° -«)

6 Sin(Tan—l(.2077/(3.6 P))
1+ COS(Tan’l(.2077/(3.6 P))

Y(X) =

The minimum aperture blockage is obtained when these blockages are equal. This
gives us a transcendental equation in P. The solution can be found numerically.

P = 0.3850m 2c = 1.386m
Diameter of the Subreflector = 0.8940 m

Suppose we also design a Gregorian reflector antenna and compare the results.
The feed antenna will be the same as for the Cassegrain because it only depends
on the effective F/D of the system.

5-1
5+1

e = = 2/3
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The half subtended angle from the focus of the ellipse and main parabola is 79.6°.
The blockage radius of the subreflector can be found.
. _ e P Sin(180°- #-)
() = T Cos(180° = )
The blockage radius of the feed antenna is given by a similiar equation as for

the Cassegrain. By equating the two expressions we get another transcendental
equation in P.

= 0.5854 P

6 Sin(Tan 1(.2077/(1.6 P))

2c = 1.6 P 0.5854 P = "
1 + Cos(Tan (.2077/(1.6 P))

When this is sol&ed numerically, we get the following results:
P=0.8131m 2c = 1.301l. m
Diameter of the Subreflector = 0.952 m

The Gregorian subreflector must be about 6 cm. larger than the Cassegrain
reflector for the minimum aperture blockage. The difference is about 0.04 dB
from the curve on page 610. A drawing with both designs is given on page 648.

If the Cassegrain subreflector is required to change the effective F/D to one
instead of 1.5, we can obtain another optimum design using the same type of
corrugated horn feed by the same type of solution to a transcendental equation.
The results are given below.

Eccentricity e = 1.857
Feed Diameter = 0.1485 m
P = 0.3389m
Spacing between Focii = 0.9547 m
Subreflector Diameter = 0.9277 m

The longer effecti&e focal length design giﬁes less aperture blockage, but only
slightly.

RAY TRACING IN CASSEGRAIN ANTENNA

It will be helpful when considering general ray tracing through reflectors to
first use it on the Cassegrain antenna where we know the answer from the
equivalent parabola. Included in the figure on page 645 is a general ray
tracing through the antenna from the feed to the main reflector. After the
main reflector, the amplitude along the ray remains constant since it is
converted into a plane wave. We will trace the amplitude ratio of the wave
through the antenna by assuming we have spherical waves radiating from the feed.
That is, the subreflector is in the far field of the feed. From page 582 we
find that the amplitude varies as 1/R along the spherical wave. The ratio

of the amplitude at the feed to the amplitude at the subreflector is Flf

- e P
fol e Cos 8 - 1
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Optimum Cassegrain and Gregorian
\
Reflector for 10 m Main Reflector

F/D = 0.3; Effective F/D = 1.5

\

—=——1.386 —>

‘G——'1.301———’r
415 i
Horn —"
— .952 m
— .894 m/

/

3.9 GHz Circular Corrugated Horn Feed

10 dB Edge Illumination toward Subreflector
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At the surface of the subreflector the curvature of the wave is changed. We
know from the geometric optics of the hyperbola that the reflected wave is also
spherical with its center of curvature at the second focus. The ratio of the
amplitude along the reflected wave to the amplitude at the surface is given
by f3/ Por
_ e P _ 2 F
f2= T+ecos f3= 1 + Cos¢

The equation for p, is just that of the parabolic main reflector. The ratio of
the amplitude at tge feed to the amplitude at the main reflector becomes:

)olf3_ (1+eCos¥) 2 F

fz (e Cos 6 - 1)(1 + Cos §)

The first thing we notice is that there is no dependence on the length, P, which
says that the amplitude distribution in the aperture plane is independent of P.
P is an arbitrary factor.

We can reduce this expression by the radial distances when expressed in terms
of the two angles: © and /.

- Singg - Sin ©
Y(‘[/) Y(8) 1+ e Cosy e Cos 8 -1

When we substitute this in the expression above, we get a simplier expression
for the effective radius.

f1P3 _ 2 F sin¢y _
f2 Sin 6 (1 + Cos¢) fe

e is the effective radius of the spherical wave. We can make a number of half
angle substitutions.

_ 2F Sin¥/2 Cos ¥/2 , _ F Tan ¢/2
f’e 2 Sin 8/2 Cos 8/2 Cos”™ ¢ /2 Sin 0/2 Cos 6/2
We can recognize F Tan #/2 = D, the diameter. We can define an equivalent

focal length, Fe, then the diameter is related to Fe.

F Tan ©6/2 = D
e
F Tan 6/2 F
f = e = __(_3_____
e Sin 68/2 Cos 8/2 C0529/2

This is just the equation for the equivalent parabola.

The important thing to remember when ray tracing is that the radii of curvature
of a wave will change when there is a reflection. In this case the wave remained
a spherical wave. In general it will be come an astigmatic wave. We established
the amplitude at the surface of the reflector and used that as the starting
amplitude of the reflected wave with the changed radius of curvature.
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EQUIVALENT PARABOLA

The feed efficiencies of the dual reflector systems can be found by using
the equivalent parabola. All the results given before for the prime focus
parabola can be carried over to the Cassegrain and Gregorian dual reflector
antennas once the equivalent parabola is found.

The dual reflector antenna can be scanned by moving the feed laterally off

the axis similiar to the prime focus parabola. For a limited range the
equivalent parabola can be used to find the scanned beam location using a

beam deviation factor as shown on the graph on page 624. We can see from the
graph on page 625 that the scanning losses of an antenna with large F/D are
smaller. If the feed has to be moved a distance, X, off axis at the primary
focus to scan the beam to a given angle, then the feed must be moved a distance,
mX, in the dual reflector system to scan to the same angle. The offset must be
increased by the magnification. Because the focal length is large, the amount
of movement off axis required to scan the beam is large and the equivalent
parabola approximation will not hold up very far. The coma lobes will rise
fast with scanning. When analyzing the off axis feed, the physical optics
approximation will give more accurate results than the aperture approximation.
The work is much more involved because the currents on both reflectors must

be found, but it is the only way to get good results.

EQUIVALENT NOISE TEMPERATURE OF ANTENNA

When performing system studies of communication, radar, or radiometer systems,
it is necessary to assign a noise temperature to the antenna. The antenna
will have conductor losses which can be given an equivalent noise temperature.

Te = (L - l)To

To is the temperature of the antenna, L is the loss, and Te is the noise
temperature of the antenna due to conductor losses. From a systems point of
view we would also include the losses in the cable leading to the the first
amplifier or mixer of the receiver. This expression is for the noise temper-
ature of an attenuator. There is however another source of noise. Because
the antenna is receiving signals from all directions, it will receive black-
body noise from the environment. The noise temperature of the antenna will

be a function not only of the antenna pattern but also the direction of the
main beam. The noise temperature due to blackbody radiation into the antenna
is the average of the product of the gain and environment temperature over the

radiation sphere.
2T 7

1 .
T = - / /G(9,¢) TS(9,¢) Sin © de d¢
(4]

a

T (8,0) is the temperature (K) of space in the direction (8,) and G is the
corresponding gain. T_is the antenna noise temperature due to blackbody
radiation. The noise %emperature of the sky is quite low (3 to 10 K) while
the temperature of the ground is quite high (290 K). Because there is such
a difference, even small sidelobes are important to the noise temperature if
they hit the ground. In most systems it is necessary to maximize the ratio
G/Ta for the best performance.
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If we have a prime focus parabolic dish pointed toward the sky, radiation will
be received directly from the ground because of the spillover radiation pattern
of the feed antenna. We will find a trade-off because when we reduce the
spillover loss by deceasing the beamwidth, we will also reduce the gain of

the reflector. 1In all cases we will maximize the ratio of the gain to noise
temperature for the optimum system. One method of eliminating this trade-off
is to use a dual reflector system. Now the spillover radiation of the feed is
also pointed toward the cool sky. For this reason most radio astronomy tele-
scopes and large satellite ground stations use a dual reflector system for the
antenna. 1In the case of space borne antennas pointed toward the earth it may
be an advantage to again use the prime focus reflector so that the spillover
radiation will point into space. But in these cases the main beam of the
antenna will be pointed at the warm earth and mechanical considerations may
out-weigh any small system advantages.

FOCAL PLANE

Because large reflectors are so expensive to build, a large amount of effort has
been done to improve the efficiency of the antenna by matching the fields in the
focal plane to the feed horn. This careful matching of the horn feed to the
focal plane fields has narrowed the frequency bandwidth but improved the overall
efficiency. Here we will consider the prime focus reflectors, the efficiency
may also be improved by shaping the subreflector of a dual reflector antenna.

We will discuss this method later.

The fields in the focal plane were found for optical instruments to be the
Fraunhofer diffraction pattern of a circular aperture.

Jl(k r QVO)
kr ¢/O

UV is the half subtended angle of the reflector (radians), r is the radial
coordlnate, and k is the propagation constant. This is called the Airy
function which is plotted on page 557, but with a different abscissa. The
Airy function is only valid for reflectors with large F/D. Traditionally the
feed horn was extended out to the first null of the Airy function with the
substitution of Sin ¢g for (/. The general pattern of the focal plane is
sometimes referred to as Airy rings because of the pattern's concentric rings.

More exact fields can be found by using the induced currents on the reflector
240X H) to calculate the fields in the focal plane. The fields are described
by axial hybrid modes, HE n These modes are a combination of TE n and T™M
modes in a circular coordinate system. Both these modes have the same phase
velocity. Hybrid modes can only propagate in waveguides with anisotropic walls
such as corrugated walls with slots A/4 to A/2 deep. The highest efficiency
is obtained when the feed fields conjugate match the focal plane fields.
Because the feed horn can only a limited size only a few modes can be used to
match the focal plane fields.

If we have a linearly polarized wave incident on the reflector, then the focal
plane fields can be described by the following equations.
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E
r

E¢ = - EZ(U) Sin @

E, (U) Cos @ U=kr Sin ¢

Er is the radial component and E¢ is the @ component in the focal plane.

El(U) Eo(Fl + F

9)

EZ(U) = EO(F1 - Fz)

]
Il

¥
) /sm(;b) Iy af

Yo
F, /sm(%) Tan?( ¢/2) J,(0) d¢f

[]

J. is the zeroth order Bessel function of the first kind and J2 is the second
order Bessel function.

The total number of hybrid modes which can propagate is a function of k a, where
a is the radius of the corrugated horn feed. The eigenvalue, u_ = k a Sin Gn’
is found from the following transcendental equation for each mode.

u Jo(un)

e Jl(un)

= Cos ©
n

The fields in the waﬁeguide hybrid modes are found from the following.

E_ = E3(k r) Cos @
Egy = - E,(k r) Sin ¢
By = €@y +6))
E4 = C(G1 - GZ)
with G1 = Sin(@n) Jo(k r Sin Gn)
G2 = Sin(Qn) Tanz(en/Z) Jz(k r Sin On)

The fields of all these modes vanish as the walls of the waveguide. If we are
matching the fields over a finite waveguide, then we must pick the waveguide
radius to be at one of the nulls of the focal plane fields. The size which is
picked for the feed will determine the number of modes possible in the waveguide.
A method for determining the coefficients of the mode amplitudes is given by

Vu The Bao (Optimisation of Efficiency of Reflector Antennas: Approximate
Method, Proc. IEE, Vol. 117, pp. 30-34, Jan. 1970). The amplitudes are

equated at n points where n corresponds to the number of modes. The amplitude
at r = 0 is one of the points and the other n - 1 points are the zeros of the
focal plane field. Using this method, the problem reduces to the solution of a
set of linear equations in the mode amplitudes.

The actual amplitudes of the modes are obtained by putting steps in the wave-
guide and performing a Fourier Bessel series expansion using the mode functions
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to find the level of the modes at the step. It is then necessary to adjust
the length from the steps to the aperture plane until the different modes
arrive in the proper phase. Each mode will travel with different phase
velocities in the guide so it is possible to get any phase difference
between them. The phase velocity is found from the mode TE, mode. The
problem of obtaining the proper modes and phases at the aper%ure of the
feed becomes more and more difficult and narrowband as the number of modes
increases. The method is also applied to match the fields of a spherical
reflector.

A second method of obtaining the coefficients of the hybrid modes is given by
Thomas (Theoretical Performance of Prime Focus Paraboloids Using Cylindrical
Hybrid Modes, Proc. IEE, vol. 118, pp. 1539-1549, Nov. 1971). 1In this case

the radiation field of each hybrid mode is found. He optimizes the feed by
adding the feed patterns of each hybrid mode to approximate the pattern: Sec ¢9/2
between * wo and zero elsewhere. This will compensate for the Cos“ {//2 natural
distribution from an isotropic feed due to the radial distance to the reflector.
The ratio of the modes is found by optimizing the product of the spillover and
amplitude taper efficiencies. The amplitudes of the modes become the variables
of a computer optimization routine.

Thomas also uses the figure of merit as a parameter to optimize. This factor
takes into account the noise temperature of the system.

T q
rla
F.M. =
T
Tr = receiver noise temperature including the blackbody noise in the main
beam of the antenna.
T = Total system noise temperature = Tr + (1 —/ZS)TS
TS = Effective noise temperature of the spillover region. Many times T is

taken as 150 K; the average between the ground (300 K) and sky (0 ﬁ).

Amplitude taper efficiency

7a
s

Using this parameter, the overall system will be optimized and not just the
antenna efficiency.

Spillover efficiency

A third method of improving the efficiency is match fields by using a spherical
wave expansion method. 1In this case the feed and reflector fields are expanded
in a series of spherical harmonics which are the product of associated Legendre
functions and spherical Bessel function. The fields can be approximated very
well by just a few terms in the expansion. Not only can prime focus reflectors,
but dual reflector and offset reflector systems can be handled by this method.
Similiar to the cylindrical hybrid mode expansion, the coefficients of the
different expansions are matched at some boundary. This method is expanded

in some detail in a book by P. J. Wood, Reflector Antenna Analysis and Design.
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REFLECTOR TOLERANCES

All reflectors will have anomalies which will reduce the gain that is predicted
from the feed analysis. If the reflector is spun, then there will be tool

marks or if made from petals, there will be seams. Large reflectors will deform -
under their own weight. There are also thermal problems when the sun shines

on one part of the reflector and produces thermal gradients across the reflector.
This is especially severe in space borne reflectors. In general the reflector
will only approximate a paraboloid because of machining and fabrication tol-
erences. It is important to minimize the cost of the reflector by specifying

as loose a tolerance as possible for the manufacturing. As the frequency is
raised, the tolerance required on the reflector will decrease by the square of
frequency. The possible gain of the reflector increases by the square of
frequency provided an optimum feed antenna is made for each frequency. The
maximum possible gain will approach a limit because of the surface tolerance

of the reflector. We will only consider small surface anomalies and assume

that the reflector retains its basic parabolic shape or deforms in a predict-
able fashion.

If the reflector retains its general shape, then surface anomalies will cause
phase errors in the aperture. That is, the curvature of the reflector has not
changed appreciably due to surface errors to cause large amplitude variations
in the aperture plane field. Small random amplitude variations have little
effect on gain. The effect of these surface imperfections is to cause a change
in the distance along the ray path from the feed to the aperture plane. These
imperfections can be caused equally by the subreflector of a dual reflector
system and have equal effect. We can handle both reflectors by the same
theory. If the anomalies are random, then they are indistinquishable from
random errors in the feed pattern phase. Some of these effects are given on
page 601 and 603. For now we will assume that the feed antenna has no random
phase errors and no phase center phase error losses. We can express the phase
error loss efficiency due to the reflector surface errors in the aperture

from the development on page 570.

I_/ﬂ/al;'(r,¢) eJlg(nMrdrdsﬁj
PEL = ———
([ ]iewardrds)’

8(r,¢) is the ray path deviation along the ray path. As expressed this
includes the feed phase error. We cannot separate the two terms, but we can
approximate the losses as being separable. Because the phase error term,

$ (r,0), is small, the exponential can be expanded in a Taylor series.
D.K. Cheng (Effect of Arbitrary Phase Errors on the Gain and Beamwidth
Chararteristics of Radiation Pattern, IRE Trans. on Antennas and Propagation,
vol. AP-3, pp. 145-147, July 1955) has found an upper bound on the phase
error due to random errors by using a limit on the integrals. If the peak
of the phase error is m (radians), then the change in gain (phase error) will
be bounded.

Z

2,

N8

3—2(1- )
(o]
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G_ is the gain without phase error. This bound has been plotted on page 603.

Using this gain estimate is too conservative but it is useful as an upper
bound.

The phase error can be found more accurately by assuming that the errors are
Gaussian distributed and the errors are correlated over regions. This has
been expanded by John Ruze (Antenna Tolerance Theory - A Review, Proc. IEEE,
vol. 54, pp. 633-640, April 1966). To be correlated over a region means that
there are dents in the surface and that the errors at one point depend on

points nearby (the correlation area) or it may mean that the antenna is made
from segments. e

oy 2 — — n
. -8 2c) - 82 &%

n D

¢ is the distance over which the errors are correlated and D is the diameter.

n=/

2,
8" is the mean square of the phase errors.
2T _q

_ ///5(640/ §r ) rdrdé
Z?7E(n¢)/rdrd¢

7 is the aperture efficiency. The infinite series converges rapidly. When
the surface deviations are correlated, then the phase error loss efficiency
is not as large as when the correlation is ignored.

If the correlation distance, c, is small compared to the diameter, then the
second term can be ignored. The phase error loss efficiency can be expressed:

2 -

-(4Teo s -5*
pEL= e (*TeA) _ o
éo is the effective RMS reflector tolerance. The factor is 47 instead of 27
because the wave has twice the distance to travel since the wave travels
further to the reflector and after reflection travels further to the aperture
plane. From the equation of $%we can find 675.

27 .4

//IE<r,¢)!€2(V,¢)rdrdé

€ = 2

ST iea,#)irdrds

e

Ruze gives the following expressions for the distance, €, in terms of the
deviation measured along the Z axis, AZ, and along the surface normal, An.

e = AZ € - bDn

1+ (x/2 £)2 J1+ (£/2 B2

A plot of the RMS reflector error for various phase error losses is given on
page 656. For example the required RMS tolerance at 10 GHz to give less than
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0.5 dB loss is 0.032 inches or about 1/35th wavelengths. This chart can be
used to specify the reflector tolerance once the surface tolerance loss has
been assigned.

The effective RMS reflector tolerance is a function of the amplitude distribu-
tion in the aperture. Because é is derived from the phase error loss, we
can relate this to the feed pattern by using the formula on page 592.

f (w)/nw ¥y d)dy de
¢t = °

o

21 . ¢,
/ _/ 1B ) Tan L dpdd

Most of the time the aperture pattern is taken as uniform since the reflector
tolerance is specified independent of the feed.

The tolerance theory has been extended by M. S. Zarghamee (On Antenna Toler-
ance Theory, IEEE Trans. on Antennas and Propagation, vol. AP-15, pp. 777-
781, Nov. 1967) to include effects of the distribution of the errors. Many
times the reflector surface is more accurate in some regions than in others
due to better structural support or construction. The second variation of

surface deviations is defined.

ff/E(r;wl (e, d) —€) rdrdé
[fiewm &) rdrdé

The phase error loss due to the surface deviations becomes

..ﬁ4ﬂ'€$/$\ 2 Th, 4
. )e('m)

=

PEL =

The systematic errors of the reflector can be determined by mechanical measure-
ments. These systematic errors are correlated over the diameter of the
reflector. The most common distortion is astigmatism: the focal point is
different in different planes. When we take a pattern through the axis of

the reflector, we can detect two types of errors. One of the errors is coma
lobes; that is, the first sidelobes are unequal. This indicates that the

phase center of the feed is not on the axis of the reflector. Because the
larger lobe occurs on the side toward the axis, we must move the feed away
from the larger sidelobe (the wave is reflected) to eliminate coma. See the
plot on page 621. We can encounter cases where the equivalent axis is
different in different planes: lateral astigmatism (also called coma). More
common is axial astigmatism. We can detect this by looking at patterns

through the axis. If there is axial displacement, then the pattern will

appear as on page 628. The feed is moved along the axis of the reflector.

When the pattern sidelobes and nulls become more distinct, the focal point is
aligned with the phase center of the feed in that plane. Of course, we will
have to separate out the possible astigmatism of the feed antenna. By doing

a series of measurements in different @ planes, a compromise axial position
can be found or the dish adjusted to remove the various sources of astigmatism.
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If the focus is unclear (indistinct), we can have a case of spherical
aberration. The wave focal point is at different points along the axis
for different radial distances on the reflector. This error is difficult
to detect by microwave measurements.

Another important pattern degradation due to errors in the reflector surface
is raised sidelobes. 1In general, it is difficult to achieve low sidelobes
because of the effects of blockage and feed support diffraction. When dealing
with a general aperture which is approximated by an array, the effects of
random errors on the gain is secondary to the effects on the sidelobes.

The sidelobe level caused by random errors is dependent on the correlation
interval and the size of the aperture. Larger apertures are less effected

and apertures with more taper have larger sidelobe levels due to random errors.
This topic is covered in some detail in R. C. Hansen Microwave Scanning
Antennas, vol I, pp. 74f.

FEED MISMATCH DUE TO REFLECTOR

The feed antenna is usually matched outside the reflector, but when placed in
the paraboloid, some of the reflected energy will be received by the feed.
This received energy will change the effective voltage reflection coefficient
seen at the terminals. We can approach the problem by using physical optics
to calculate the field at the feed. The reflection coefficient will be given
in terms of an integral over the currents of the reflector. This integral
will be reduced to a single algebraic expression by using the principle of
stationary phase.

Let us assume that the feed is a Huygens source. This will simplify the
expressions of the analysis, but will retains its validity for a general
source because any source can be expanded into two orthogonal Huygens
sources. When we combine the current on the bottom of page 631 with the
results on page 636 and ignore the Z component, we obtain the surface
current on the reflector.

~ o -k %
ks = 28 o ¥ €V £ A7 ¢ ]
(S [52 en4)

G, is the gain of the feed antenna in the direction ({/,0). Pt is the input
power which is proportional to some reference voltage.

P =_’V—‘2.
T ZO

The radiation of each differential current element is found from the magnetic
vector potential. At the feed aperture the potential becomes

!

/e

25 sy €T ) | elnd)] s
‘4zr7r 2 f’t 4 2,

The field associated with this is easily found because the feed is in the far
field of the reflector.

E=- jwuh
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Using this electric field, we can find the Poynting vector magnitude.

£l?
S =-—
r {
The power received by the feed antenna is the Poynting vector magnitude times
the effective area of the feed.

2 2
P.= ISrIA( = |E| 6_‘:(90,¢)/\
e

We are interested in the voltage reflection coefficient which means we must
find the voltage on the transmission line.

Ce(¥.0) 2,

Vo= (z, Pr)l”z = |ElA )

r

When we substitute this back up through the equations, we obtain the differen-
tial voltage reflection coefficient.

-/ 2K,
_ 2w J<5e
dv, = ~._/_7:_.'(_ Cos-g € ~ /\// é)c(%¢)q/5
(am)™n r
The reflection coefficient is the integral of this differential voltage over

the surface of the reflector. Making a few substitutions for the constants,
we obtain the following integral.

v Ge (Y0 -2k
|rl = <= /COS‘g ald ezfds

This can be generalized to any reflector by replacing Cos ¢¥/2 by Cos i, where
i is the angle of incidence from the feed to the reflector.

We are left with an integral over the surface of the reflector. We will solve
this by the method of stationary phase. If the reflector is large in terms

of wavelengths, then the contributions from areas nearly an angle will cancel
each other. The amplitudes will be approximately the same, but the phase,

2k p, will vary rapidly for small changes in ¢/. The summation of these
phasors in the complex plane will be zero. The only place that there will be
any net contribution to the integral will be at those points where the phase
varies slowly. These will occur where the first derivatives of the surface

are zero relative to the axis toward the feed. Most of the contribution to

the integral occurs from those areas near normal incidence.

We will pick a Z axis along the normal incident ray and expand the reflector
surface in a Taylor series about this axis as was done one page 582. The
integral is approximately the wvalue of the amplitude at the point of normal
incidence times an integral of the phase function over a small region about

the point.
-/2kp, .
’,1/ ~ éﬁ:(fk)i;;ﬁ____ “Zykﬂé? J‘Zﬂr§5(23?4</2(€9/
TR s
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v = p-fo = /X P (-2 — o

[}

curvature of the surface about the Z axis. When we substitute this into éﬁ@?ﬂ
and retain terms of second order, we get the approximation

)Lt (P+R)y2, 1iptp) 2
: ﬁf’°) 2 ( Fpe’

The integral is separable and each part becomes the form

—2kx X°
fe T dx

If we increase the limits of the integral to infinity, then we can find a
solution. The portion of the integral beyond the small region around the
normal will not contribute because the phase moves rapidly and cancels

< R .
/e-Jzkadx = [ e'y(-z-)
2k

o

. _ Xt z , )
The distance Z = -—ZL = &+ _’Z;:) , f)‘ 3 fl are the principle radii of

Since we are not interested in the phase, we can ignore that factor. When
take the product of the two approximations and reduce common factors, we
obtain and approximate expression for the reflection coefficient.

[ == éi(fb)/X Filte
BT o VLpi+p,) (ot fa)
Consider the parabola. The radius of curvature is - 2f and ‘Fo = f.
Gf(O)A
4T £

r] =

The reflection coefficient is proportional to the reciprical of the focal
length in wavelengths times the feed bore sight gain divided by 47 . For
a constant F/D, larger reflectors will have smaller reactions on the feed.

Suppose we have a reflector with F/D = 0.5. The beamwidth of the source
should be 60° from the graph on page 597 for minimum feed losses. The bore-
sight gain (directivity) is 10.4 dB from page 39. If the reflector is 10 ft.
in diameter, then the above equation reduces to

IF( = 0.171/Freq.(GHz)

Frequency 1r VSWR RTN LS

0.5 0.343 2.045 9.3 dB

1.0 0.172 1.414 15.3

2.0 0.086 1.188 21.3

4.0 0.043 1.090 27.3

8.0 0.021 1.044 33.4
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The reaction of the reflector only becomes significant when the reflector

is only a few wavelengths across. At that point the stationary phase
approximation is no longer valid. If the feed can be moved along the axis

of the reflector, then the component due to the reflector can be separated
from the mismatch of the feed itself. When the feed is moved along the axis,
the following Smith chart response is seen at a single frequency.

The reflection coefficient of the feed, ., remains constant but the phase of
the reflector reaction, ', will change and trace a circle on the Smith chart.
As shown above, the vector from the center of the chart to the center of the
circle traced when the feed is moved along the axis is the feed free space
reflection coefficient. The radius of the circle is the magnitude of the
reflector reaction on the feed antenna. In those cases where the feed antenna
is not matched well in free space, the effect of the reflector will not be
seen.

There are two methods of reducing the reaction of the reflector. 1In the first
method a flat plate is placed at the vertex of the reflector. This plate
which may be as much as 1/6 th of the diameter will reflect energy out of
phase with the energy from the rest of the reflector and cancel the total
reaction of the reflector. Silver, Microwave Antennas, gives a technique

for designing these, but it is usually a cut and try design. The bandwidth

of the vertex plate is quite narrow and difficult to predict. A physical
optics approximation of the vertex plate will fail because it is too small

in wavelengths for it to be valid. In the second methods the reflector

or subreflector is modified. If the reflector can be shaped so that there

is a null in the direction of the feed, then the reflection coefficient will
be reduced. But when this is done, the effective blockage of the feed
increases since a sharp null cannot be produced. This method will give

large bandwidths. A small raised cosine annulus can be put into the reflector
to redirect energy into the feed and cancel energy from other regions. This
has the advantage that it can be analyzed by geometric optics although like
the vertex plate, it is narrow band. By adding more rings the feed can be
matched at more than one band. Of course, these techniques can be used to
remove the mismatch of the total feed system.
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OFFSET REFLECTOR

A reflector which has its feed out of the aperture eliminates many of the
problems of the center fed reflector. Of course, there is no aperture
blockage. This blockage raises the sidelobes (pp. 612) and will increase

the cross polarization due to edge diffractions from the feed or subreflect-
or and support struts. Second, by using an offset fed reflector, there is

no restriction on the size of the feed structure. The transmitter or receiver
can be located with the feed antenna.

The geometry of the offset fed reflector is shown on page 663. The reflector
is circular as seen from the Z axis but instead of being centered on the axis
of the paraboloid, it is offset. The center is at some angle, ¢/, from the
axis of the paraboloid and the reflector subtends an angle 2 from the focus.
The focus is still located as for the full parabola. Each parg of the para-
bola retains its focussing property. It will convert a spherical wave from
the feed into a plane wave in the aperture plane defined by the axis. 1In
order to eliminate excessive spillover loss, the feed boresight is pointed

at the center of the reflector. The phase center of the feed is still

located at the focus of the paraboloid.

The offset reflector can be analyzed with the same tools as the centered
antenna. The aperture field method as well as the physical optics approxi-
mation can be used. Without going through that again, we can state some of
the results. Along the X axis (pp. 663) there will be an amplitude taper
because of the natural tapering of the parabola. For a symmetrical feed
pattern the energy in the aperture will be higher at the bottom than the top.
Of course, reflectors with higher F/D will have less of this effect.

In the symmetric reflector the cross polarization component can be eliminated
by using a Huygens source feed. If there are cross polarization lobes, they
occur in the diagonal planes (Condon lobes). This is not the case with the
offset fed reflector. Because the feed horn is tilted up to point at the
center, there will be cross polarization in the plane along the Y axis.

The symmetry is destroyed. There is no cross polarization in the plane along
the X axis because symmetry is maintained. The results of the central feed
antenna given on page 632 also hold in general form here. As the F/D is
increased, the cross polarization decreases. This is due in part to the
decreased tilt of the feed antenna. When the offset angle, Y. s decreases,
then the cross polarization also decreases as it approaches fhe central

feed case. Another polarization effect which has been observed is beam
squint when the feed is circularly polarized. There will be a slight
difference between the RHC and LHC beam pointing angle. Again, this effect
is less for larger F/D.

The F/D of the offset fed reflector is given by the expression

Cos ¢% + Cos ¢g
4 Sin ¢%

The easiest way of obtaining large F/D is to use a dual reflector. Both
the Cassegrain and Gregorian reflector systems carry over. The subreflector

F/D
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Chapter 14 Reflector Antennas

should be kept out of the aperture to eliminate all blockage. With these
systems it is possible to get very low cross polarization which enables
frequency reuse with orthogonal polarizations.

The offset fed reflector can be scanned by moving the feed laterally along
the axis perpendicular to the boresight of the feed (the line defined by ¢/)
The beam deviation factor is modified from the value given on page 624.

(F/D)
center fed (F/D)

offset

(BDF) =  (BDF)
offset center fed

Example: Given an offset fed reflector with yl = 45° and ¢% = 40°, find
the beam deviation factor.

Cos(40°) + 1

(F/D)center fed 4 Sin(40°) 0.687
_  Cos(40°) + Cos(45°)
(/D) tecet fed 4 Sin(40°) 0.573
From the graph on page 624, (BDF) = 0.928. The formula above gives
. center
the beam deviation factor.
(BDF) = 0.774

offset
The feed must be laterally offset further to get the same scanning.

One proposed use for offset fed reflectors is communication satellites where a
dual reflector system is combined with an array feed. If there is a cluster of
separate feeds around the focus, then each feed will give a separate beam on
the earth. Each beam will come from a lateral offset scanned feed. The beams
can be centered on large cities and provide channels between them. Since the
reflector can have low sidelobes without the blockage, there will be little
crosstalk from signals entering the sidelobes.

A corrugated horn feed is essential to keep the sidelobes low because it provides
a good illumination of the reflector. 1In order to be able to scan the beam far
off axis, it is necessary to increase the size of the subreflector. The corru-
gated horn is able to more accurately approximate the Huygens source than the
regular horn and will give less cross polarization.

The effective F/D of the reflector will be from 2 to 3 which will provide low
cross polarization and the possibility of frequency reuse. The large F/D also
greatly reduces the amplitude taper in the aperture. The area efficiency of
the reflector should be able to approach 80% because of the large F/D. Only
the subreflector must be increased to accommodate the off axis beams. When
off axis plane waves are incident on the main reflector, the beam is focussed
off axis on the subreflector which has been increased. The subreflector then
focusses the wave into the off axis feed horn.

In other schemes the custer of feeds is formed into an array. The beam can be
continuously scanned instead of being fixed. The reflector system is unique
because not only can it be scanned by phase shifting in the array, but by
amplitude tapering. If the effective center of the aperture is moved off
center, then the beam will scan.
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SPHERICAL REFLECTOR

The biggest advantage of the spherical reflector is its ability to be scanned
by a large amount without degrading it performance. In order to correct for
its spherical aberration it must be feed with a line source feed or have a
corrector subreflector. The feed is rotated about the center of the sphere
and illuminates the portion of the sphere centered on the radial line. The
portion of the sphere illuminated depends on the length of the feed.

On page 666 is a diagram of the ray tracing through the spherical reflector
when a plane wave is incident. Because the reflector has circular symmetry
all rays will intersect the axis (the radial 1line in the direction of the
plane wave). We can see from the diagram that the rays which strike the
outer portions of the sphere are reflected closer to the vertex. The focus
has become a line. Consider the single ray shown with dimensions. It is
incident on the reflector at some distance, H, from the axis. A radial line
is drawn from the center to the point of incidence. The radial line is, of
course, a normal to the surface is at an angle,¢’, from the axis. This angle
is also the angles of incidence and reflection. An isosceles triangle is
formed from the reflected ray, the axis and the radial line. From this and
the geometry of the sphere we can find the distance Z, the location on the
axis of the intersection of the reflected ray.

R

zZ = 2 Cos ¢

H =R Sin¢/

Using the trigonmetric identity Sin29 + 00s29 = 1, we can eliminate %’from

the equations.

H2 R2
—E + —'——2 = 1
R 4 7
2
HZ - R2(1 __R : )
4 7

We can use this equation to find the distribution of power along the axis.
Using the conservation of energy, we can say that the power in a differential
area of the plane wave is reflected into a differential length on the axis.

If we take the ratio of the differential area to the differential length, then
we will get the amplitude distribution.

dA = 27H dH

The equation above for the reflected wave can be differentiated implicitly.

2
2H A = —2— dz
3
2 Z
7B R2
The power distribution on the axis is given by Pz = 3 where B
is a constant. 2 Z

If we take the limit as H approaches zero, then we find the location of the
focus for waves near the axis. This is called the paraxial focus.
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Paraxial Focus = R/2

We can normalize the amplitude to the value at the paraxial focus.

8 Z

A plot of this distribution in dB is given on page 668. The required length
of the feed is détermined by the subtended angle of the reflector. We find
this by ray tracing the furthermost ray and finding the intersection with the
axis.

Feed Length = R (1./Cos ¥ - 1)/2

This function is plotted on the bottom of page 668. For example, if the half
subtended angle is 35°, then the feed must be 0.092 radius long and the ampli-
tude will be tapered by 2.2 dB.

Not only does the amplitude along the feed have to be varied, but the phase
as well to match the wave intersecting the axis. We need the path length
along the ray to the aperture plane as a function of Z. The distance is
found from the diagram-on-page 666.

Path Length = R Cos§{/ + Z
We can solve for Cos ¢ in terms of Z from the equation on the top of page 665.
Path Length = R2/(2 Z) + 2Z

This function is plotted on page 669 relative to the path length at the par-
axial focus. TFor reflectors whose subtended angle is small, the phase along
the feed can be approximated by a linear function. The distance changes
0.063 radius in the example above with y% = 35°. The phase change along
the feed is

Phase change = -gzz.R 0.063

A

If the reflector is 10 feet in diameter and operating at 3.9 GHz, the phase
change would be 450°. The feed length is 5.52 inches or 1.82 wavelengths.
If the feed is a leaky wave antenna, then the relative velocity in the
structure should be 1.46. This velocity could be provided by a waveguide
structure operating at a frequency = 1.37 (Cutoff Frequency).

CORRECTOR SUBREFLECTOR FOR SPHERICAL REFLECTOR

It is possible to design a subreflector which corrects for the spherical
aberration and focuses the rays into a single point. A spherical wave
radiated from the focus will be transformed into a plane wave in the
aperture. This means that all the ray paths must be equal, since both
the sphere around the feed and the aperture plane are eikonals (pp. 580).
When we find the surface which gives equal path lengths, then Snell's law
of reflection will be automatically satisfied from Fermat's Principle.
The ray paths are stationary.

667
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Chapter 14 Reflector Antennas

The figure on page 671 shows the geometry of the corrector subreflector.

The problem can be treated in 2 dimensions because there is circular symmetry.
The focus is located at position (F,0) where F is the distance from the center
of the sphere. The corrector crosses the axis at (C,0). Suppose the curve of
the corrector is given by W(Z,r). Let us find the path length of the ray.

The central ray has the length

2R -C+ (F - 0)
This ray is blocked by the corrector but we will pick it to be the length of
all the rays. The length of the general ray is
PQ + QS + SF

Q =R Cos {¢ QS = (z - RCos(//)2+~(r - R sm;//)2
2

SF = (F - Z)2 +r
We can equate these path lengths.

R Cosy{ + (Z—RCosy/)2+ (r—RSinﬂ/)2+ (F—Z)2+r2

=2(R~-C) +F

From the angle, 2‘//, we can find a second relationship.

(r - R Sin{) (Z - R Cos¥/) Tan 2y

The two equations can be solved for r and Z and normalized to R, the radius of
the sphere.

Z/R = Cos ¢ - (Coszyl - 4(1 - C/R) Cos ¢/ - (1 + E/R +
(2 + (F/R) - 2(C/R)?) Cos 2 ¥/ (4 (F/R Cos’¥ - Cos§f - C/F + 1))
r/R = (2 Z/R Cos¥ - 1) Sin{/ /Cos 2 ¢

The equations have arbitrary parameters: C/R and F/R, which means there is a
two space continuum of solutions. Not all designs are practical. C/R can be
no larger than 0.5 or the rays from the central portion will strike the sub-
reflector before crossing the axis. If F/R becomes to large compared to C/R,
then the subtended angle of the subreflector seen from the feed becomes small
and a feed antenna with a small beamwidth will be required which will have a
large aperture. There is a trade-off similiar to the Cassegrain or

Gregorian reflector to be considered. The figure on page 672 points out
another potential problem. This figure shows a number of possible subreflectors
for C/R = 0.4. When we trace the rays, we find for designs with F/R less than
0.61 that the rays will strike the feed before reaching the subreflector for
the portions of the reflector near the edge. Since the feed antenna will have
some size, the minimum F/R is 0.65.
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Corrector for Spherical Reflector
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We can relate the feed pattern of the feed antenna to the aperture distribu-
tion by using conservation.of energy and differential areas.

F(Y) Siny df dp = A(H) H dH d¢

F(Y) is the feed pattern, H is the radial distance in the aperture, and A(H)
is the aperture distribution (power). The aperture field can be found

() = /F(W)Hsmw dy

Consider the paraboloid reflector. H =2 F Tan2 %72 F is the focal length.
F Sec’ Y2 ap = I3 dy/
’f Sin ¢/

If the feed voltage pattern is Ef, we take it out of the radical and get the
result:

dH

H

E( = Ep(Y) / ;smfa _f{_ = E() /o

This is the same result we get on page 589 assuming a spherical source.

We can use this result to find the aperture field distribution for the
spherical reflector with a corrector. On page 674 is plot showing the
aperture distribution for an isotropic feed and ones tapered toward the

edge of the subreflector for C/R = 0.4 and F/R = 0.65. These plots show the
central blockage. The losses can be found by integrating the feed pattern
and aperture distribution.

10 dB Taper 20 dB Taper
Amplitude Taper Loss 0.05 dB 0.38
Spillover Loss 0.64 0.56

These were found using the formulas on pages 608 and 609 for blocked apertures.
There is also a blockage loss if we want to compare to the full diameter of
the possible aperture.

2

10 Log( 1 - (H in/Hmax) )

Blockage Loss

The corrector subreflector blocks about 33% of the radius of the projected
sphere.
Blockage Loss = 0.5 dB

The spillover loss includes the energy which is blocked by the corrector.
A parabolic reflector with similiar feed taper and central blockage would
have losses of about 2.1 dB. The 10 dB taper case above only has 1.2 dB
of loss. It is less because the subreflector has reflected the energy out
to the edges of the aperture.
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Chapter 14 Reflector Antennas

More details of the spherical reflector corrector can be found in the original
paper: F. S. Bolt and E. L. Bouche, "A Gregorian Corrector for Spherical
Reflectors'", IEEE Trans. on Antennas and Propagation, vol. AP-12, pp. 44-47,
Jan. 1964 and in the book: Antenna Theory, Part II edited by R. E. Collin

and F. J. Zucker.

SHAPED REFLECTORS

We have used a geometric optics method to relate the field from a spherical
source to a second eikonal surface, the aperture plane of the corrected
spherical reflector. At this point the far field pattern is found from the
aperture distribution. Only by using diffraction theory is a pattern found.
Geometric optics predicts a pencil beam only in the projection of the
aperture. We will use geometric optics to find the shapes of reflectors
which spread the energy in defined patterns. But because of diffraction
effects, the final pattern must be found by considering the field distribution
on an aperture, the currents induced on the reflector, or by including
diffracted fields from the edges of the reflector (GTD) with the geometric
optics field.

Two principles are used to design shaped reflectors. The first is the geo-
metric optics reflection. The second is the conservation of energy in ray
tubes. The reflection is expressed as a differential. Conservation of

energy can be expressed either in terms of differential areas or integrals.
Consider a ray in the plane of incidence on a reflector and the corresponding
differential angles about the incident and reflected rays. We will assume
that the ray is emitted from some point source which could be either spherical
or cylindrical.

The sum of the angles © and {/ is twice the incident angle, i.
e + ¥ =21

If we consider the differential triangle at the surface, we find the slope
of the reflector.

e = 4P
Tan fp dW
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The angle ¥ has only changed by a differential amount, so the angle of
incidence at ¢ + d¢/ along the reflector is still i in the limit. The
sum of the angle B8 of the differential triangle and the angle of incidence
is normal to the surface.

B+ i = T)2

The length f>d¢/ is normal to the line defined by ¢ + df/ , therefore
X + B =72 B=72 -«
i +7/2 -«a=7/2 or =1

Combining these equations gives us the differential relationship of the
geometric reflection.

Tan((® + ¢ )/2) = 4P
P

We can integrate this differential equation for a solution.

y ,
An ﬁi—) 477%, LA

po )

is some initial angle of the feed to some point on the reflector. 0 is
a %unction of ¢ . £ (¢ .) is some arbitrary constant which defines the
initial radius. Geometric optics is a zero wavelength approximation and
is consistent at any size. This is the same with the parabolic reflector.
All parabolic reflectors collimate the beam, but size is arbitrary from
geometric optics. Only by considering diffraction or currents induced on
the reflector can we find the gain and beamwidth of the antenna.

Take the case 9(¢/) =

W fm Vo gy = -2 cos(hs) —he cos(%))

Using the properties of the natural logarithm, this becomes

bW _ (s
TP /”‘(cosl(w/z,)

Taking the exponential of each side we get the polar equation of the reflector.

w) = pw) =)
f f Cos‘(%)

If W = (0, then we can set (¢’) = F and obtain the equation for the
parabola given on page 585.  This is a known result because if O(¢/) =
then a cylindrical or spherical wave has been converted into a plane wave
by the reflector.
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The differential equation of the reflection only tells us the shape of the
reflector for a given direction of reflection and incident waves, 8({).

We must still find the power density in various directions. This is found
from the ratio of differential areas and the conservation of energy. If
the feed power pattern is G_(¢¥/,8') and P(0,8) is the reflected field, then
the two are related for a given ray.

K P(99¢) dA(9,¢) = Gf((y’¢') dAf(SI/s¢')

K is a constant which is found by equating the total powers incident and
reflected from the surface. This is assuming that the reflections are one

to one with the feed pattern. If they are not, then the right hand side of
the equation is a sum. But the sum must be over field intensity instead of
powers. Each ray will have an associated phase depending on the path length
and the feed pattern phase. This forms the basis for GID where the waves are
diffracted in all directions from an edge and add to the reflected waves and
direct waves from the feed.

CYLINDRICAL REFLECTOR SYNTHESIS

We have concentrated on circularly symmetric reflectors, but we can also feed
cylindrical reflectors with a line source antenna. The surface is generated
by a curve which has been moved along a line parallel to the Z axis. Pattern
multiplication establishes the total pattern. The reflector establishes the
beam in one plane and the line source in the other. It also reduces the
problem to a two dimensional one.

The power radiated by the feed in a particular direction is given by

C. () ay

where G_.( ) is the feed antenna power pattern. This power is reflected in
the direction 8. The reflected power density is given by

P(8) de
These are proportional Gf( ¢J) d¢/ = K P(8) de

The limits of the reflector are and ¢/ which are reflected into angles
8, and ©,, respectively. The totai power 1nc1dent on the reflector is equal

to the total power reflected.
62

%
/@(W)W = K/P(e)c/e

0,

’

This established the constant K. We can integrate the differential equation
to find a formal solution.

9 v
/P(e)c/e = —/;’”/G,c(wdf”
e, ¢

This equation is used with a known feed and pattern functions to find the
relationship 6( ) which is used with the reflection differential equation
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to find the reflector shape. The reflector is found only to within a scaling

constant.
i,w (oW) + ¥ d¥
pw) = p) e

Only in a few cases will the feed pattern and the reflected pattern be known
as analytic functions. The feed pattern maybe measured or in the case of
a horn antenna found from an integration over an aperture. In these cases
it is necessary to perform numerical integrations in the energy balance
differential equation. A table can be generated for integral of the end
point, O, for example, and the value of the integral. This is done for
each integral with the feed pattern integral values multiplied by the
constant 1/K. Using interpolation routines, © can be related to a given 97.
This can also be done graphically. Once we have a relationship between 0
and ¢ , or a means of calculating it, we can use the relationship above

to find the polar equation of the reflector to within a scaling constant.

TOROIDAL REFLECTOR

The cylindrical reflector can be evolved into a reflector with circular
symmetry forming a toroidal reflector. A digram of the toroidal reflector
is given on page 680. A curve has been rotated about some center line to
form a torus reflector. The line feed of the cylindrical reflector becomes
a ring source around the reflector as shown. We will assume that the feed
and reflector are symmetric about the axis so that we can reduce the problem
to two dimensions. The feed pattern and the reflector pattern will be
independent of . The geometry of the problem is defined on page 681. If
we refer to the drawing on page 676, we can relate these angles to the old
ones and determine that the differential equation of reflection is the same.

_dp
pdy
This means that we can use the same integral solution to this equation once
we have found the relationship between © and ¥ .

= Tan((0@ +¢)/2)

The power radiated by the feed in a particular direction must be related to
the spherical coordinate system.

Ge(¥) sin ¢ dydd

The reflector pattern power density is also in spherical coordinates.
P(8) Sin 6 d6 d¢
G () siny d¢ = P(®) Sin 8 dO K

The constant K is found by equating the total power reflected to the total
power incident on the reflector. v
2

[ewsmody
-
K &
/P(g) sw@do
9]
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Toroidal Reflector

Ring Feed
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Symmetry
Axis

Geometry of Toroidal Reflector
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The differential equation equating the power densities can be integrated to
find a solution.

o 4
/P(Q)S/NGG/B = L 6;(4”) 5"‘/%451,
o o

'

/

With known feed pattern, Gf(¢ﬁ), and known reflector pattern, P(8), both sides
of this equation can be integrated to find a relationship between 6 and ¢ .

At this point we have the same problem as on page 678 only the integrals

have changed. The relationship is established by equating values of the
integrals which must be done graphically or by numerical interpolation from
tables of values.

CIRCULARLY SYMMETRIC REFLECTOR

The toroidal reflector can be evolved into a circularly symmetric reflector
by rotating the ring feed up until it is on the Z axis. The ring shrinks to
a point feed. A diagram showing the geometry of the reflector is on page 683.
The angles are the same as shown on page 676. The differential areas are
found in spherical coordinates just like the toroidal reflector and the same
set of equations apply here for the synthesis of the reflector surface.

We will use this reflector for a design example to illustrate the method
which is used for cylindrical, toroidal, or circularly symmetric reflectors.
The integrals over the feed and reflector patterns differ only slightly in

the different cases. Suppose we are designing a reflector for a spacecraft

to transmit a pattern which is vertically polarized on the surface of the
earth. The satellite is 1000 nautical miles high. The visible portion of

the earth will extend a little more than 50° from nadar. Because the pattern
must be vertically polarized, we cannot expect to transmit to a station direct-
ly below. We can shape the reflector pattern so that it compensates for the
increased range to the horizon compared to inner angles. On page 684 is a
plot showing a pattern which would compensate for the increased range. Our
required pattern will extend from 30° to 50° where most of the visible surface
is contained. This is P(Q) with 91 = 30° and 92 = 50°.

A feed antenna which will give us vertical polarization everywhere is a
circular waveguide horn excited in the TM 1 mode. This mode has circular
symmetry so we can use a symmetric reflecgor. We will pick a reflector

which has a half subtended angle of 50°. From the feed point of view this

is equivalent to an F/D = 0.54. A suitable feed pattern is shown on the
bottom of page 684. The pattern is down by 9 dB at the edge of the reflector.
We will also cut a hole in the center of the reflector at the other 9 dB
point, 5°. Our feed pattern angle, ¢/, extends from 5° to 50°.

We will pick the reflection from (/= 5° to be © = 30° and from ¢ = 50° to be
@ = 50°. This is arbitrary because we can reverse the reflections. 1In this
design there will be no caustic, a place where rays cross. We must perform
the energy integrals over the feed and reflection patterns. If we normalize
each of these to the total integrals between the end angles of the feed or
reflection pattern, then we can equate the normalized integrals. On page
685 is a plot of the two normalized integrals versus the feed angle or the
reflection angle. These have been found by numerical integration of the
patterns. We use this diagram to find the relationship between © and ¢7 .
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Range Compensation Pattern for a Satellite @ 1000 nm
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These integrals over the patterns are equal when for a given feed angle, the
wave is reflected in a given direction ©. Traced on the plot is the example
of ¢/ = 25°. From the 25° feed angle scale draw a vertical line to the
normalized feed integral curve. At the intersection draw a horizontal line
to the curve of the normalized reflection pattern integral. From the point
of intersection of the of the horizontal, draw another vertical line to the
scale on the top of the graph. This is the reflection angle, 40°. Of course,
the end points are ¢ = 5° to 8 = 30° and ¢ = 50° to © = 50° which is what
was picked as the end points. After we draw sufficient sets of these
contructions, we can plot a curve of O versus ¢’. This has been done on
page 687.

With a given relationship between 6 and ¢’, the differential equation of the
geometric reflection can be integrated to find a normalized polar equation
of the reflector. The required equation is given on the top of page 679.

v
P - . { Tan ((O(W) + Y)/2) oy
p) ?

Like the feed and reflection pattern integrals, numerical methods can be used
with this integral to find the normalized radius. Below is a table of the
normalized polar equation of the reflector.

Angle Radius Angle  Radius Angle Radius
5 1.0 21 1.1241 37 1.3768
6 1.0056 22 1.1352 38 1.3989
7 1.0114 23 1.1468 39 1.4220
8 1.0175 24 1.1590 40 1.4460
9 1.0237 25 1.1717 41 1.4709

10 1.0303 26 1.1850 42 1.4969
11 1.0371 27 1.1990 43 1.5239
12 1.0441 28 1.2135 44 1.5520
13 1.0515 29 1.2288 45 1.5812
14 1.0592 30 1.2446 46 1.6116
15 1.0673 31 1.2612 47 1.6432
16 1.0757 32 1.2786 48 1.6760
17 1.0845 33 1.2966 49 1.7103
18 1.0937 34 1.3154 50 1.7459
19 1.1034 35 1.3350

20 1.1135 36 1.3555

A cross sectional diagram is drawn on page 688. The reflector has a hole in
the center because that portion was not specified. The feed horn has little
pattern energy in that direction anyway.

The reflector can also be designed so that the inner edge reflects the feed
energy toward 50° while the outer edge reflects toward 30°. This reflector

is said to have a caustic because the rays will cross in front of the reflector.
Another reflector was designed using the same steps given above. A scale
drawing of this reflector surface is given on page 689 along with the previous
design.

We usually think of a reflector as something to decrease the beamwidth of the
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feed. A reflector was designed to transform the same feed pattern into the
pattern on the top of page 684 from © = 0° to @ = 50° for the satellite at
1000 nm. The reflector design proceeds just the same. The result is given
on page 691. The reflector without a caustic is convex to spread the beam.
Since we can redirect the energy with the reflector, we can fill the hole
in the feed pattern. Unfortunately, the polarization effects will insert a
null.

A reflector can be designed with a constant angle 90 for reflection. We can
substitute this directly into the reflection differential equation as was
done on page 677 and integrate. The result is the polar equation

pW) = fu <os (U +6.)/2)
Co; L((‘”-P 60)/2)

This curve is sometimes called a paraconic. A curve which will give a beam
at 50° is given on page 692.

We can find the gain of the paraconic by aperture integration or physical
optics. Before we do that, we will estimate the gain from a scanned aperture.
Suppose we have a paraconic which is 40 wavelengths in diameter and is
scanned to 50° as the reflector on page 692. The beam is formed on each

side by an aperture which is only one-half the total. There is a phase

taper in the aperture plane to tilt the beam to 50°.

If we assume that the amplitude is uniform in the aperture, then we can find
a minimum beamwidth due to one side.

BW = 57.3/20 = 2.8°

This is the beamwidth for a half aperture on boresight. We can find the effect
of scanning on page 554. A beam which is scanned to 50° has 1.6 times the
beamwidth. This gives us a beamwidth of about 4.5°. The reflector has a
butterfly pattern which means we can estimate the directivity from the curves
on page 44. The gain is about 15 dB. We will find a slightly higher gain
when we integrate the aperture, but compared to 42 dB gain for a uniform
aperture on boresight, this is a large reduction.

We can analyze the reflector by using an aperture plane. The following
diagram shows the aperture.

R Sinzeo & ‘ Aperture Plane

Paraconic Aperture
P — Constant Phase

Plane ! Surface (Eikonal)

—— R 1+ $in°0_) gl
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There will be a phase taper across the aperture because of the distance from
the eikonal. If we assume a uniform amplitude in the aperture plane, then
we will obtiin an upper bound to the gain of the paraconic reflector similiar
to 47 A/ )°. The aperture field is given by

oJ k Sin Qo(/9 - Rmin)

The directivity is found from the formula on page 569.
2

2 7 Ry . ) _d'
T (1+ Cos 6) I_o// ;‘/kPSIA/GoeJkFS/ue(OS(d é)o)c/f</¢'/z

Directivity =

/\z B T ~Ruax
[ [ pdpds
™
We can perform the ¢ integrations.
i & cos (-4’
\/’k S/ coS -
0/-6 f d¢ = 2m T, (kp smé)

2T Ruugy
[ ’0 C/F f/¢ = W—(EM:X - 76‘:”)

eMw

J_  is the zeroth order Bessel equation of the first kind. In the numerator
integral we can substitute ¢t = IDLA and reduce the directivity to

2 PA("" SlN.‘og)
2 - .
g l(/+(a$ 9)24) / @'./'Q"tswg"J;(zrrtsmé)i'df/
(%) (I+2 SIN (] Z S/"/teo

2

Directivity

The directivity can be found when 6 = 90 by performing the integration
numerically. The results are plotted on page 694. Our example of a 40
wavelength diameter paraconic designed to a beam center, Go, of 50° has
15.4 dB gain from the graph.

The graph is an upper bound because a uniform aperture distribution was

assumed. The gain of any real paraconic reflector will be less. We can
use the aperture amplitude distribution to find an amplitude taper loss.
The edge taper is increased from the parabolic reflector.

£.(F) = EW/p

f = joa (051(e°/2)
cos*((8,+ W)/2)

We can associate o with an F/D and plot the edge taper for various beam
directions similiar to page 590 for an isotropic feed. The result is on
page 695. Comparing with the plot on page 590, we can see that the edge
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taper on the aperture has increased. It also increases with increased beam
scan. Because of this the amplitude taper loss of the paraconic reflector
will be greater than the equivalent parabolic reflector.

When the beam is shaped as on page 582f, the gain will be less than a para-
conic reflector which directs all the energy in one direction. The actual
pattern of the shaped reflector will be determined by diffraction just like
the paraconic.

DOUBLY CURVED REFLECTORS FOR SHAPED BEAMS

It is a common radar requirement to have a narrow beam in one plane and a
shpaed beam in the other plane. The required pattern is usually a cosecant
squared pattern in the vertical plane so that up to a given altitude the
return will be independent of range. The beam can be obtained with a
cylindrical antenna, but it is simplier to feed from a single feed antenna
instead of a line source.

We will only specify the pattern in the principle planes denoted, 9_, the
shaped pattern, and O_, the pencil beam. Similiarly, we will speci¥y the
feed antenna in terms of (/. and {//H For a given angle {/_ from the feed
the wave will be reflected 1n a direction 8,. The only alYowed 0., is zero;
that is, the wave is collimated in the horizontal plane. There is symmetry
about the vertical central curve and the problem reduces to designing this
curve.

>/ Central Curve

Z'
&y

A

Z_Boresight

For a given {/, all incoming waves at an angle QV must be reflected into the
feed; that is, for varying QV. These incoming rays. form a plane which is
seen on edge in the diagram above. The central curve lies in the Y-Z plane
while the collimated wave lies in the X-Z' plane (X is out of the paper).

7' is in the direction of the incoming wave. A rib will be designed which
lies in the X-Z' plane to reflect the wave coming from the direction Gv into
the feed. o

A. S. Dunbar, "Calculation of Doubly Curved Reflectors for Shaped Beams",
Proc. IRE, vol. 36, pp. 1289-96, October 1948.

S. Silver, Microwaﬁe Antenna Theory and Design, Section 13.8, pp. 502,
McGraw Hill, New York, 1948.

T. F. Carberry, "Analysis Theory for the Shaped Beam Doubly Curved Reflector
Antenna", IEEE Trans. on Antenna and Propag., vol. AP-17, March 1969.
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Consider the rib which is drawn below.

Central Curve

Incoming Wave (X-Z' Plane)

_ e Z

X

The curve from P to N lies. in the X-Z' plane and is called a rib of the
reflector. An incoming wave from direction 8_ will have a constant phase
line (eikonal) from A to B in the figure above which is parallel to the X
axis. To focus the beam the phase distances along the ray paths must be
the same (see page 667).

BP + PO = AN + NO

This is used to derive the equation of the rib in the X-Z' plane which is
a parabola with a focal length given by

Fos P () CosZ(O () + Y12)

The focus is located on the Z' axis.

The problem is reduced to designing the central curve Fc(¢«ﬂ' The reflected
energy density is given by

P(8y) doy PC(WV) d¢y

This is similiar to the energy density given on page 673 for the spherical
reflector corrector. The feed energy density is

Ge(¢y) ¥y ¥y
These energy densities are proportional.

KRG (fy) d¢y = POy p (W) doy

If the limits of the central curve are ¢/, and ¢/, which correspond to reflections
in directions 8, and O,, then the integrals of the feed and reflection patterns
can be normalized and €quated.

R. S. Elliott, Antenna Theory and Design, Section 10.6, pp. 504, Prentice
Hall, 1981.
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“
/ = duy ﬁ/ ©,) 46,

Y f(H)

y/z —
[Taw [ ra) e,
4 felw) 6,

This is similiar to the circularly symmetric reflector example except that
the feed pattern integral depends on the radial distance to the central rib.
We must know (¢,) before we can determine 8 (¢.) which will be required
to find F (¢V3 using the reflection dlfferentlal equation.

pr) = pW) efﬁv(({ﬂy+9(¢y))/z)c/%

The solution can only be found by an iterative process. We must assume some
)0 (¢.), solve for 6 (yx ) and use this to find a new p (wv) After a few
itérat ons, (¢.) will converge We can use normalize fk with the above
ratio of integrals. A good starting function of f% is a parabola.

ﬁ(%) _ cos’(¥/r)
() <ost(wsz)

One problem is that this method may produce a surface which is not uniquely
defined. The reflector is picked to have a constant width in the horizontal
plane. The surface is defined by ribs which are parabolas in the plane X-Z'.
Z' is defined by the reflection angle O_ and changes direction along the
reflector. It is necessary to plot the curve of the vertical coordinate of
the edge versussﬂ to see that it is monotonic. If there are loops in the
curve, then the surface is not uniquely defined. Given a width, X, we can
find the vertical coordinate of the edge by the following development.

The location of the rib on the central curve is given by

PPy sindy

The rib is a parabola in the X-Z' plane with focus given on page 697. The
Z' coordinate at the edge is

XZ

)

The vertical dimension is given by the projection of this on the Y axis.
. [}
Joc( WV) Slnyv + Z' Sin GV

Elliot points out that this method is approximate and that not all points on
the reflector will have the proper slope for reflection. Provided that the
beam is approximately a pencil beam with small deviations in beam shape, then
the surface will give the desired pattern. The surface can be designed with
or without a caustic depending on the reflection angles at the edges, but -
there will be less chance of an ununique surface with the caustic design.

Z'
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Carberry presents a method of analyzing the reflector using phsical optics.

The currents are found on the reflector by matching boundary conditions. These
currents are integrated to find the far field through the magnetic vector
potential. It has been found that when applying these methods that is
necessary to subdivide the reflector into many intervals because the phase of
the currents move rapidly with distance. The analysis must be repeated

with finer and finer intervals until the result converges.

OTHER BEAM SHAPING REFLECTORS

A dual reflector antenna (Cassegrain or Gregorian) can be designed to produce
an arbitrary phase and amplitude in the aperture plane by shaping both the
subreflector and main reflector. Using conservation of energy and the differ-
encial equations of reflections, Galindo derives a pair of differential
equations in terms of the aperture radius. Instead of integrating the energy
differential equation, both differential equations are solved simultaneously
using Runge+Kutta or other suitable numerical methods for differential
equations. Williams finds solutions with the restriction of equal amplitude
and phase in the aperture plane by integrating the energy equation. All these
dual reflectors are circularly symmetric reflectors. Usually a circular cor-
rugated horn is used for a feed because its pattern is independent of @.

Collin considers using a parabolic reflector for the main reflector instead of
the shaped main reflector. In many cases the difference between the shaped
reflector and a parabola is small. The field in the aperture plane will have
approximately the same amplitude but a quadratic phase error. We can build
the shaped subreflector and feed, and measure the pattern: phase and amplitude.
These can be referenced to a phase center to give minimum phase error loss on
the main reflector by uysing optimization routines. This is a real advantage
when retrofitting an existing large main reflector.

Another techique of beam shaping in one plane is to use a linear array of
feeds with all but at most one feed laterally offset from the axis of the
parabolic reflector. The offset feeds will give patterns as shown on pages
621, 622, and 626. These patterns are added to the main central beam to
shaped the main lobe. Many times these feeds are fed as a resonant array
which will require empirical adjustment to achieve the proper amplitudes
and phasings. Further details are in Silver, Microwave Antenna Theory and
Design, Section 13.3.

The reflector can remain a paraboloid but with the outside rim shape an ellipse.
The beamwidth in each plane is the Fourier transform of the aperture size and
distribution in that plane. Wide dimensions give narrow beams. A feed is
needed with a wider beamwidth in one plane than the other to illuminate the
reflector. One problem with such feeds is astigmatism; for example rect-
angular horns. For long flare angles the phase center will be near the
aperture and for short flare angles it will be further in the throat. A
pillbox antenna will be help some of these problems.

Galindo, V., '"Design of Dual Reflector Antennas with Arbitrary Phase and
Amplitude Distributions', IEEE Trans., AP-12, pp. 403-408, July 1964.

Williams, W. F., "High Efficiency Antenna Reflector'", Microwave Journal,
vol. 8, pp. 79-82, July 1965.

Collins, G., '"Shaping of Subreflectors in Cassegrainian Antennas', IEEE Trans.
AP-21, pp. 309-313, May 1973.
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