Chapter 15 GTD Analysis

GEOMETRIC THEORY OF DIFFRACTION (GTD)

This is a method of extending geometric optics solutions to field problems
by including diffractions from edges and curved surfaces. The field at a
point is the vector phasor sum of the various components from all possible
direct, reflected, and diffracted fields from sources of radiation. These
fields propagate from the sources as ray optics fields. Once expressions
are found for the various types of diffractions, the problem reduces to
tracing rays and accounting for all possible sources at a given field point.
Because the contribution of each part of the total field can be separated, a
great deal of insight into the importance of each structure can be gained.
Sources of trouble can be identified and work concentrated on those areas.
In those cases where the field can be found by eigenvalue problems involving
partial differential equations, the contribution of any one part is lost in
the solution. Contributions cannot be separated.

GTD is inherently a high frequency technique which has been extended by
diffraction coefficients so that many problems on the order of one wavelength
can be accurately solved and valid engineering solutions found for structures
as small as A/4. Eigenvalue solutions are quite limited because as the size
increases more and more modes are required to accurately describe the field.
Usually to solve the partial differential equations, it is necessary for the
structure to fit some standard coordinate system. Of course, we can use any
set of eigenfunctions to expand the fields and find a solution using moment
methods. GTD cannot replace these important methods but it is bounded by
zero wavelength on one end (GO) and extends into the region covered by

moment methods. 1In fact, moment methods have been combined with GID to
improve the accuracy in the transition region.

SLIT IN A SCREEN

Suppose there is an infinite screen with a slit in it and a plane wave
incident from the left as shown below. Consider the possible solutions.
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A geometric optics solution gives us a column field on the right side of the
screen as shown above. Note that all the solutions can be decribed in two
dimensional space. When the width of the slot is large in terms of wave+
lengths, there are distinct shadows and G.0. is valid or at least approxi-
mately. As the slot width is reduced we must consider aperture diffraction.

Historically the first method is the Huygens source approximation. Each
point in the aperture can be considered a source of waves. This is a two
dimensional problem so the waves are cylindrical. The solution for the far
field is given by the Fourier transform of the fields in the aperture. This
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Chapter 15 GTD Analysis

is discussed thoroughly on page 530. Because the screen is still present
after the induction theorem as been applied to find the aperture fields,
the solution is not valid near the screen. Nothing has been done to
satisfy the boundary conditions imposed by the screen. We get the Sin X/ X
pattern in k space for the uniform aperture field.

In the next method equivalent currents are found in the aperture using the
equivalence theorem and replace the aperture fields. The aperture can be
replaced by a metal screen and the method of images can be used to find the
exact fields on the right side of the aperture. This method requires an
exact knowledge of the fields in the aperture. When geometric optics are
used to find the fields, the solution is called the physical optics approxi-
mation. This method was used to find the radiation from a slot on page 176.
Vector potentials are used with the equivalent currents to find the radiation.
In as much as the fields are known in the aperture, the method can find near
and far fields.

GTD combines the geometric optics solution with diffractions from the two
edges. These diffractions are dependent on the direction of the diffraction.

she
AN

Plane Wave G.0. Field

Edge Diffraction

Infinite Screen

The lines labeled SB are the shadow boundaries where the G.0. field vanishes.
The diffractions will be discontinuous across the boundary to compensate for
the discontinuity in the G.O0. field because the total field will be continuous
across the boundary. The GTD solution will not only predict the fields on

the right side of the screen, but also the left. The diffractions have
identifiable sources: the edges of the slot.

Consider a point at which the field is to be found and the ray tracing to it.

Incident

Incident

In the diagram above there is no contribution by the G.O. field but only the
diffractions. The amplitude of the diffractions depends on the angles @$' and
$ and the distances Ri' The diffractions are no longer plane waves as the
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incident wave, but cylindrical waves whose radius of curvature is at the

point of diffraction. It is the caustic of the wave. The phase is determined
by the diffraction coefficient and the distance R, because it is assumed that
the diffraction rays are ray optic (free space) waves. Since R, and R, are
finite, we can find the near field of the diffraction and the waves which

are diffracted on the incident side of the screen. At this point we will

not concern ourselves with the details of the diffraction coefficients, but
only the idea. They are found from a solvable canonical problem and extended
to other cases.

As we extend the distances R, and R, further and further, we must evolve the
solution into a far field formulation. The amplitude becomes proportional

to 1/R but the phase difference remains like any other far field approximation.
We have a two element array with the edges as the elements whose patterns

are not identical.

The problem can be solved, in theory, without resorting to a far field approxi-
mation, but since the diffraction coefficients are usually found by computer
routines, to maintain accuracy it is necessary to use it. When R becomes
large, it would be necessary to find the sine and cosine of large numbers.

e 3 KR (os(kR) - § Sin(kR)
The computer with a finite word length soon loses all significant digits and
the results are based on the evaluation of functions with one or two signi-

ficant digits. Although GTD can find both the far field and the near field,
we are forced in many cases to formulate the problems in separate ways.

One of the possible diffractions is from one edge to the other. Now instead
of a plane wave incident on the edge, we have a cylindrical wave. This wave
will be diffracted by the edge and give another contribution to the total
field. But this diffraction is quite a bit smaller than the first diffraction.
This process can be repeated again and again to get higher order diffractionms,
but the contributions diminish rapidly. It is also possible to take all
multiple diffractions together and find a self consistent set of waves
between the two edges which account for all the multiple diffractions and
gives simple amplitudes for the incident waves. Unless the edges are close
together, double diffraction will give the best results. We will find that
it is not necessary to consider all possible low order diffractions for all
parts of the pattern. GTD will show by discontinuities in the pattern that
additional terms are necessary. Sometimes small discontinuities are
unimportant and not worth the extra effort to remove.
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Chapter 15 GTD Analysis

GEOMETRIC OPTICS OF ANTENNAS

Geometric optics is a high frequency approximation which has distinct
shadows. Consider a horn antenna as shown below. The horn has a flare

angle of 2X, The G.0. solution is radiation which has a caustic at the
projected intersection of the two slant sides and spreads within the 2
region and does not escape. The G.0. field is a pyramid whose tip is
determined by the sides of the horn. 1In the case of the E plane, it is of
constant amplitude and a cosine distribution in the H plane since the field
vanishes on the walls. The phase is determined by the distance to the
vertex. The cosine distribution is in terms of the variable X in the
figure above and we should express it in terms of the angle 8. The aperture
field distribution is

K Cos (7 X/W)

If the axial length is L, then W = 2 L Tanx . For a given 8, the aperture
distance, X = L Tan 6. Using these the G.0. field in the aperture becomes

77 Tan O
K Cos (g o)

The far field will also require a ray phase term: e-JkRo and an amplitude
term: 1/Ro for spherical waves or 1/ R0 for cylindrical waves.

The parabolic reflector has a simple G.0. field.  The spherical waves from
the feed at the focus are converted into plane waves in the aperture. The
solution is a column of plane waves from the projection of the dish outer

curve. R
Parabolic
Reflector ’ Geometric Optics Field
RB

The caustic for this wave is at infinity which measn that neither G.0. or GTD
can predict the far field at boresight since both fail at caustics. The GID
problem can be solved by finding equivalent rim currents to account for the
diffractions. The vector potential is used to find the fields. But most times
the field at boresight is not needed or can be found easily using aperture
techniques.

The geometric optics of shaped reflectors can be found by the intermediate
results of the synthesis. 1In one case the wave is spread without a caustic
and in the other the caustic is near the antenna. The far field pattern can
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be found everywhere. The amplitude of the beam in various directions was

a given function and is still valid. The point of reflection was found by
using normalized energy integrals to relate the source angle to the reflection
point. Knowing the reflection point and the field point we can find the path
length through reflection. The total phase is given by the factor

3k (p@) + RO

where is the distance from the feed to the antenna and R(@) is the distance
from the reflector to the far field point.

After reflection from a curved surface, the radii of curvature of the wave
changes. Expressions are needed to relate the radii of curvature of the
incident wave and the radii of curvature of the reflector to the radii of
curvature of the output wave. But in the case of the synthesized reflector,
these were already given in the procedure to design the surface. In the
general reflector it is necessary to search for the reflection point or
points and to determine the change in the radii of curvature of the reflected
wave to find the amplitude of the wave at the field point. Through these
reflections we still assume that the wave is a free space (ray optic) wave
and the phase is determined by the distance.

SHADOWS

Geometric optics predicts perfect shadows. But there cannot be a discontinuity
of the fields in space without supporting currents and charges on a surface.
The edge of the shadow cannot support currents or charges, therefore the

fields must be continuous across the shadow. Consider a semi-infinite ground
plane and a line source nearby.

~RB II SB~”
7~

IIT

The ground plane will reflect waves as long as the angle @' is large enough
that the ray hits the plate. Because of the edge there is a maximum reflection
angle, labeled RB (reflection boundary). This is a second discontinuity in

the G.0. field and it cannot support currents or charges anymore than the
shadow boundary. The fields must be continuous across this boundary as well.
The continuity of the fields across these two boundaries is provided by the
diffraction coefficient of the edge.

The reflection boundary, RB, and the shadow boundary, SB, divide space into
3 regions. In region I where the source is located and before the RB, there
are 3 contributions to the fields; direct, reflected, and diffracted rays.
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Region II between the RB and the SB has contributions from direct radiation
and diffracted waves. Beyond the SB into region III both the direct and
reflected rays are blocked and there is only diffracted waves.

A second type of shadows comes from a smooth object such as the cylinder.
Here there is no sharp edge to generate edge diffraction and the reflection
and shadow boundaries become one.
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There are only two regions of space. Just as before the field must be cont-
inuous across the shadow boundary. The GTD solution is given in terms of
creeping waves which follow the curved surface and shed energy tangentially.

TYPES OF GTD PROBLEMS

GTD will handle any antenna problem where the dimensions of the pieces are
on the order of one wavelength or larger. The types of problems are limit-
ed only by the availability of suitable diffraction coefficients. Subject
to these restrictions, it can be used for any field problem.

GTD is used to find the pattern of antennas such as horns or corner reflectors
where the antenna can be described by flat plates. Usually the problem can be
solved by an equivalent 2 dimensional problem which is valid in one plane.

Not only is the front lobe of the antenna found, but the backlobe as well.
Another common antenna which is solved by GID is the parabolic reflector.

The diffractions off the edges are used to find the pattern off boresight
through to the backlobe (except for the exact backlobe) behind the reflector.
Small antennas are modelled by simple elements or possibly an array of simple
elements whose magnitudes and phases are found from moment methods. The
aperture impedance and coupling between antennas can be found in some cases

by using GTD.

The other common use of GID is modelling. The effects of nearby structures
can be found by considering the reflections, blockage, and diffractions from
edges and curved objects. Aircraft, ships, and missiles are modelled with
antennas mounted in various locations. In these cases the antennas are
modelled by simple radiators since we are mostly interested in the effects
of the structure. But if we are interested in the coupling between, then

we must model the antennas more carefully. GTD can also be used to find

the scattering off models which means it is suitable for radar cross

section calculations.

A common problem is locating a new antenna on an aircraft or ship. All the
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prime locations have been taken and there only remains a few locations. GID
can be used to model the vehicle and various locations tried to determine

the best location. The antenna can be quickly moved to the possible locations
and a determination made without waiting for a model to be built and tested.
It is nice to verify the calculated result with measurements, but as confi-
dence in the GTD model is gained, it will be unnecessary to built a model.

Too often a decision must be quickly before a model can be made.

Many of the methods of GTD can be given in a simple example.

Suppose we have

a dipole over a one wavelength ground. We will consider only the H plane.

The geometry is given below.
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The problem can be handled in 2 dimensions. The electric field is out of the
paper and is radiated uniformly around the dipole. Consider the direct rad-

iation.

shadow boundary as shown above.

given on page 707.

It will be blocked by the ground plane and radiates to the SB,
The pattern of the direct radiation is

The electric field will be zero at the ground plane from boundary conditions
for the tangential electric field. This can be satisfied by an image dipole
a quarterwave below and 180° out of phase. The image is the reflected wave
and radiates between the reflection boundaries, RB, shown above. The pattern
of the reflected signal is drawn on page 707. It is the same amplitude as
the direct radiation. We can combine these as a two element array and obtain

the pattern shown on page 708.

The pattern has discontinuities because we

have not taken into account enough sources to get an acceptable pattern.
On page 709 is the pattern of a dipole over a 5 wavelength ground plane along
with the pattern obtained from considering only the direct and reflected rays.

The simple analysis gives accurate patterns out to 80°.

It also points out

one of the characteristics of GID. If not enough sources of radiation are
considered, then there will be obvious discontinuities in the pattern. For
any applications we may not be interested in the areas near the discontinuity
and it may not be worth the effect to remove them.

The diffractions from the edges are shown on page 710 referenced to the level
of the total pattern. When we combine the edge diffractions with the direct
and reflected rays, we have a four element array. Each element has a different
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Chapter 15 GTD Analysis

pattern as been shown. The edge diffraction has discontuities which com-
pensate for the discontuities in the combination of reflected and direct
rays. The total combination is plotted on page 712. The asymmetry of the
ground plane can be seen in the pattern. At 6 = *90° the difference is 2 dB.
The phase of the edge diffraction is determined by two factors: first, the
wave travels fromthe source to the edge giving an incident wave with phase:
- kR. Second, the diffraction coefficient has a phase pattern which has been
suppressed in the amplitude only patterns.

Consider the discontinuity at 56° on page 708 in the direct and reflected
array. The diffraction from the left edge substracts from this pattern

for ©<56°; changes sign at @ = 57°; and starts adding to the total pattern.

At the second transition, 124°, it again changes sign to smooth out the
discontinuity there and form the backlobe. The same thing happens on the other
side.

To complete the study of the H plane pattern of a dipole o&er a ground plane
a number of patterns have been drawn on page 713. 1In all these cases the
dipole is a quarter wave over the ground plane.

GEOMETRIC OPTICS

We have considered the general idea of GTD. The major portion of the work
solving a problem is geometric optics. We will spend a great deal of time on
the forms of various diffraction coefficients, but the bulk of the time solving
any problem is spent on geometry and geometric optics. Every diffraction
becomes a new source of radiation which must be ray traced through the geometry
to the field point. Keeping track of polarization also consumes effort

because coordinates must be constantly rotated to match reflection and
diffraction boundaries.

We discussed the general astigmatic ray on page 581. It has different radii
of curvature in the two principle planes. Remember that the principle planes
of a surface at a point are orthogonal and contain the largest and smallest
radii of curvature. The electric field has the following variation:

E(d) = £ V'kd/ L
‘ ° € (p+d)(p+d)

where E0 is the phasor of the electric field at d = 0, and and P , are
the principle radii of curvature of the ray. The phase factor says %hat the
wave travels like a free space wave.

The special rays are derived from the astigmatic wave. If Pl = f’z, then we
have a spherical wave which can be referenced to the caustic.

E(d) = £ /%9 P
(p+d)

Cylindrical waves are when 'Fl or FZ is infinite.
Y ¢ . .
E(d) = £, e J d/——,f Cylindrical Wave
(p+d)
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Plane waves occur when f91 = fDZ = o0 , E(d) = E0 e J kd

Both cylindrical and plane waves are nonphysical but are useful approxi-
mations. We can solve many problems in two dimensions using cylindrical
waves; as was done for the dipole over a ground plane. We use these wave
functions for all the direct radiations and the for propagation along all
rays. At each interface the radii of curvature have the potential of
changing which must be worked through each reflection and diffraction.

REFLECTIONS

When a ray is incident on a surface, the incident ray, the reflected ray, and
the normal to the surface at the point of reflection all lie in the same
plane with equal angles from the normal to the two rays. We assume that
locally the surface acts like a plane surface. Let us look at polarization.
The incident wave polarization will be changed, in general, after reflection;
for example, right hand circular to left hand circular. The polarization
vector is defined in 3 space which means we will need a 3 x 3 matrix for

the transformation of each of the two components. This can be reduced to a
2 x 2 matrix with only two non-zero if we express the polarization in terms
of the ray. Polarization is defined in a plane whose normal is the axis of
the ray (pp. 54).

Consider the plane defined by the incident ray and the normal of the surface.
We will define two orthogonal unit vectors normal to the incident ray. These
vectors as a pair can be orientated at any angle about the ray._ .We will pick
one of these polarization vectors to be in the incident plane, a); , and the

other perpendicular, 'Zi . The incident ray is expressed:
L

- gt a¢ £
E; = qw Eﬁh + a4, tai.

Each component is the projection of the incident ray polarization on to the
unit vector.

~
‘l
~

" /, ¢ s etc.

Incidence Plane

The tangential component, EiL » 1s tangent to the surface. From the boundary
conditions (pp. 153) we know that the electric field vanishes on the surface
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of a conductor. Eﬁ = - Et

The reflected wave must cancel the incident wave at the surface. This
component will be normal to a plane defined by the normal and the reflected
ray. Of course, in the case of a reflection the incident and reflected
planes are the same.

The parallel component is at an oblique angle to the surface. We can find
the reflection by considering the magnetic field which will be tangent to
the surface.

The magnetic field lies along the Z;.axis.
[ A '_l’
Hyal = S5, x £;4,
This tangential magnetic field will induce currents on the surface and reflect

phase (pp. 154).

i r
Hy = Hy,

The parallel component of the magnetic field does not change direction on
reflection but the electric field must.

The reflected ray coordinate system is centered about the ray direction
similiar to the incident ray. E, 1is perpendicular to the reflection plane
and since the reflection and incident planes are the same:

-r _ —i
a a;
The parallel component in the reflection plane is found from the cross product:

- _ T §'

Using these ray centered coordinate systems which are aligned with the inci-
dent plane, we can express the reflection in matrix notation.

?(0)=E§-§

R is a dyadic (tensor): R = a, Zﬁ - a, aj

The reflection is found from carrying out the indicated scalar products.
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If we write the reflection in terms of the ray fixed coordinates of the
incident and reflected rays, the reflection in matrix terms becomes

E(0) 1 o] [Eh
E}(0) o -1] |El@)

where Q_ is the point of reflection along the incident ray. Of course, the
direction of the unit vector a; changes after reflection.

The total field along the reflected ray is given by

E(s)= E,«R | AP oI KS
(Pr+s)(pr+s)

S is the distance along the ray and,fﬁ, e, are the reflected ray radii of
curvature. For a flat surface we can use Images of the incident ray caustics
for the centers of curvature. The general curved surface changes both the
principle radii of curvature and the orientation of the principle planes
relative to the reflected ray centered coordinates. These are given by the
expressions:

Lo- 2 (L L)+ L
Y G CE 7
[ _ (l / + A
—_— = —[—— + —
RN A

f1 and f2 are generalized focal lengths of the surface.

Kouyoumjian and Pathak have derived formulas for the focal lengths of a
surface and the direction of the reflected ray principle planes. Suppose

we have a reflection on a surface with principle radii of curvature:___R1 and _
R.,. The directions of the principle axes are given by unit vectors U, "and Uz.
In the ray fixed coordinate system the incident ray will have radii o%
curvature_ifl angi 92 which are along the orthogonal axes defined by unit
vectors: X, and X_. These vectors are perpendicular to the incident ray.
We define a matriX relation between the incident ray principle curvature

directions and the surface.

=i, = =i | =
RS X0
= la = i, =
X0 L0
. . R e
The determinant of this matrix is [|8] = (X1 Ul)(XZ U2) (X2 Ul)(X1 U2)

Kouyoumjian and Pathak, "The Dyadic Diffraction Coefficient for a Curved Edge",

NASA CR-2401, June 1974.
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Given the angle of incidence (surface normal to incident ray), Qi, the
following are the focal lengths.

1 cos gi <(922)2 + (0, . ©,)% + (911)2>
; lo] R, R,
2 i 2 2 2 2
. ((Pll _ Li> +<_1.i _ li>4_0<>s_29_<(922) - et et - e )
1 f Fro f el R )

4 Cosel (((922)2 LGNS R NP (911)2)2 b Ielz»l”é

4 + R. R
el Ry R, 12

If we only had a single reflection off a surface, it would not be necessary to
find the direction of the principle axes. Only the magnitudes of the radii

of curvature are needed to find the amplitude variation along the ray. But

if there are multiple reflections, then we must also find the directions of
the reflected ray principle axes.

To find the reflection principle axes, we must define the following matrices.
The incident ray radii of curvature is given by

i i 0 i %
Q = | F1 z = (X, X)) Q) |y
2

Similiarly, the reflector surface is described by the matrix

20
c = 1
o 1
o R
2
The curvature matrix for the reflected ray is
Qr = Q; + 2 (9-1)T Co 9_1 Cos &%

This matrix was diagonalized to find the focal lengths of the reflected ray.
We can use the vector reflection formula between incident and reflected rays
on the principle axes of the incident ray.
-
b1 = X1 2( n Xl) n
2 2 2

The vectors; BT and b. are not the principle axes of the reflected ray. One
of them is found from the formula
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r —r r ‘-r.
_ [ QR ~ F"I-) bl - le bz]
= = . =
\/r(‘qzz - }%;) + (‘Q:;)

The other can be found by the cross product between the reflected ray unit
vector and the one principle axis vector, Xl'

=

X _ _ &r =T
X2 = S™ x X1

These principle axes vectors must be used with a second reflection to find the
new matrix: 9.

With these equations for the reflected wave principle radii of curvature and
axes, the geometric optics reflections can be traced through. Remember that
the principle axes are not the same as the j and . components associated with
the reflection matrix and the plane of incidence.

GTD is derived from two canonical problems. These are ones with exact solu-
tions which are matched to over some region of space. The first one is
diffraction from a semi-infinite ground plane. This is used to find the
diffraction from a wedge. The second canonical problem is the infinite
circular cylinder. Creeping wave approximations are matched to this solution.
Of course, we will deal with finite objects, but we still assume that
locally the wave diffraction is the same as the infinite case.

EDGE DIFFRACTION

J. B. Keller has extended the idea of reflections to edge diffractions. If
a ray is incident on an edge, the diffracted rays will form a cone from the
point of incidence with the cone angle equal to the incident angle.

A
(S

/

77777777/ 777

The incident angle is measured between the ray and the unit vector tangent to
the edge at incidence. 1In the case of normal incidence, the diffracted rays
and the incident ray lie in the same plane. The example of the dipole over

a ground plane was handled in two dimensions because there was only normal
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incidence and all the diffracted rays remained in the same plane.

The diffraction coefficients are simplified +4f they are given in terms of
incident and diffraction planes. This is an extension of the development
for reflected rays. The incidence plane is defined by the cross product
of the edge tangent and the incident ray.

ag = e x S'/Sin/S0

a¢, is the normal to the incident plane, S' is the incident ray unit vector.
is the angle between e and S'. The wave will be diffracted in a come

with the angle between the diffracted ray and the edge tangent also ;30.

There is no unique direction of the diffracted ray except that it lies in

the cone. When we pick a particular direction on the cone for the diffracted

ray, then we can define a diffraction plane. It is defined by the cross

product of the edge tangent vector and the diffracted ray.

a¢ = - e X 5/31n/50

a, is the normal to the diffraction plane. S 1is the diffracted ray unit
vector. We have the following vector relations for diffractionmn.

|e x S| e x s

e.S=e- S

These are similiar to the laws of reflection (pp. 584) except that the planes
are no longer the same and the edge tangent vector is used instead of the
surface normal.

We will describe the incident and diffracted wave polarization in terms of
parallel and perpendicular components relative to the two planes similiar
to reflected rays. _The perpendicular component is a,, or a, and the
parallel component aﬁg or ag, - These are ray fixeg coordinates.

Eb, X agl '

a¢ X E,Bo =

vy v

The coordinates of the diffraction are drawn on page 720. The incident
plane is between the incident ray and the edge tangent. The diffraction
plane is between the diffracted ray and the edge tangent. 1In the case of
reflected rays, the two perpendicular unit vectors were the same, but not
so for diffractions. This is an extension. Edge diffraction is described
by a 2 x 2 matrix with only two non-zero terms.

Consider the case when B = 7//2; the two dimensional case. The parallel
components of the inciden? and diffracted rays are parallel to the edge.
The electric field must vanish at the edge.

— e

Egs *+ Eg, =0
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This is Dirichlet boundary conditions. If the edge is along the Z axis,
then E = 0. For acoustic problems this is called the soft boundary condi-
tion. “We can derive fields which are TM to this edge by satisfying the
boundary conditions on Ez. In our case Eﬂ, is the same as Ez.

When we consider the perpendicular component, we repeat the development of
reflected rays and consider the magnetic field associated with E,. It is
parallel to the edge. This field must satisfy the Neumann bounda?y
condition: :
oH,

on

n is normal to the boundary. For acoustic problems this is called the hard
boundary condition. The fields derived from Hz are TE waves to the edge.

=0

The diffraction coefficients are deri§ed for these two dimensional fields.

Soft (Dirichlet) EZ EZ =0 ™ Waﬁes to Z
..af%
Hard (Neumann) H =0 TE Waves to Z
z dn
In two dimensions the Z components along the edge must satisfy the Helmholtz
equation. £
z
(v:+ k?) =0
He
E,B:@
A, é;,
® Ep.
= 3

If in the diagram of the incident and diffraction planes.we let B, = 90°,
then we get the above diagram which shows the polarization unit vectors.
We assume Z is out of the paper. The general incident ray is given as

i i oo i__9 ..
E. =E Sln/Bo H = 7 SlnIB,,

The two dimensional diffraction is found from the E, and Hz components.
d i
Ez - Ez Ds P e-J'kS
gl atp Vs(Jo-:—s)
z z "h

The diffracted rays are proportional to the incident fields, a diffraction
coefficient (DS or Dh)’ and a caustic spreading factor:

721
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|
s(,o+—$)

S is the distance from the edge to the feild point along the diffracted ray.
The edge is one of the caustics of the diffracted ray; ;3 is the other.

The phase is determined by - kS.

When we refer to the drawing on page 721 above, we can relate the ;; and —b
components to the diffracted fields. °

d

E
d 4 .. d _ "0 ..
Ez = - EBo Sln/Bo Hz = - z;— Sln/Bo

We can see that the diffracted rays are in opposite direction to the Z compon-
ents when /Bo = 7T/2. For the general case the diffraction is written:

d ¢
Esl _ _ Eg Us \/—EQ_J'/(S
Eg Eh. Pn) ¥ S(p+s)

Like the reflected ray, we can write this as a dyadic.

- a y a,BoDS - a¢, a¢ Dh
In matrix form the diffraction is written:

gley)  [-ps o[ EkGe) | [Tp— oK
- - ¢ S(s+
E;’ (S) (6] Dn E¢,(QE) )o)

on -
]

We extend the two dimensional diffraction into 3 dimensions by expressing the
fields in terms of an incidence plane and a diffraction plane. The two_
components are either parallel (ag; or ag, ) or perpendicular (ag, oE~a¢)

to the planes. There is no component in the direction of incidence (S') or
diffration (S) because we have assumed that the fields are ray optic (free
space electromagnetic waves). To have the diffraction matrix in such simple
terms requires coordinate transformations from incident waves which must be
aligned with the edge to diffraction waves which are also aligned to a
diffraction plane.

Consider a curved wedge cross section at the point of diffraction with the
cross section plane defined by the tangent vector.

nTr 722
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The diffractions are limited by the surfaces 0 and n7 . Waves between this
boundary and the surface are creeping waves which are considered separately.
These surfaces define an equivalent wedge. The direction of the incident
ray is specified by the angles 8' and @'. The angle @' is measured from
surface 0. The diffraction is also measured from this surface. The wedge
angle is (2 - n)77 .

For a given angle of incidence, @', space around the wedge is divided into

3 regions as shown above. Region I has direct, reflected, and diffracted
rays. Region II has direct and diffracted rays; and region III in the shadow
has only diffracted rays. If ¢'>(n - 1) and §'<7 , then there is no shadow
boundary and region III is eliminated.

The amplitude of the diffracted ray is determined by the incident ray pagnitude
at the edge, the diffraction coefficient which is proportional to 1./k6, and

a spreading factor:
L
S(s+pP)

One caustic is at the edge. The second caustic distance, P> is determined
by the incident ray curvature and the edge curvature.

/ / ;1 Pe-(8'=35)

— e —
= rs

F f? F - fe Q.Slﬂz/gq

Gg is the radius of curvature. of the incident ray in the plane of incidence.
e can plot the radius of curvature in polar coordinates.

////—-Plane of Incidence

The principle axes have been aligned with the X and Y coordinates. The
radius of curvature varies in an ellipse between the principle axes.

i i i s
)oe = f)l Coso. + Fz Sin<e
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The focal length, f, is determined by the edge.

1/ = - 5
a Sin‘/3o
a is the radius of curvature of theAedggAwith the direction from the center
defined by the unit vector B . (§8' - 8) is the difference between the

incident and diffracted rays.e /50 is the angle between the edge tangent and
the incident (and diffracted) ray.

If the edge is straight at the point of diffraction, a—»<2 and 1/f = 0. The
caustic distance of the diffracted ray is determined by the incident ray
curvature in the incidence plane.

WEDGE DIFFRACTION COEFFICIENTS

The wedge diffraction coefficients were first formulated by J. B. Keller.
His diffraction coefficient is:

7
D, = 6145,,./7)71‘[ I < J ]
ﬁ nfamk SwpB, Cos% - COS(}E%?.') COS% - Cos (i‘.‘%ﬁ')

Remember that DS is the soft diffraction coefficient which is used with
Dirichlet boundary conditions (E_ = 0, TM) and Dh’ the hard diffraction
coefficient, is used with Neumann boundary conditions (J0H /dn = 0, TE).

The units of the diffraction coefficient is A“. Wedge diffraction is

weaker then the incident and reflected rays by this factor. As the frequency
increases, the diffraction coefficient decreases. This is not true, however,
at the shadow and reflection boundaries.

Consider the term: (oI __ (ps (¢5 - é’)
n n

As the diffracted ray direction approaches the shadow boundary, ¢ — @' +7T,
the difference of cosines approaches zero, and the first term in the brackets
approaches infinity. Likewise, when we consider the second term:

Cos%;.~ Cbs(@é%%ié)

this term approaches zero and the diffraction coefficient infinity when @,
the diffracted ray direction, approaches the reflection boundary. The
diffraction coefficient gives good results provided the diffracted ray

is not too close to these boundaries.

Because the diffraction coefficients at the shadow and reflection boundaries
were infinite, GTD was not extensively used. This problem was solved by

R. G. Kouyoumjian and P. H. Pathak who expanded the field at these bound-
aries in an asymptotic expansion and forced continuity. This is called

the uniform theory of diffraction. Their wedge diffraction coefficient is

given as:
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- _j 77./4 _ at .
D - —= [cm("* 29y pac it 2t - 91
i Y27k sin B "

+ Cot (L= §¢n‘ 8y rae 1l av(o - 81))

¥ <Cot( 7+ B+ 00y pac 1™ a(p + 07) +

Cot (L= §¢n+ 8y B L™ a9 + ¢'))>]

In short hand this is written: Ds = D(1) + D(2) F (D(3) + D(4))
h

The first two terms are associated with the shadow boundary because they
provide for a smooth transition across them. The second two terms are
associated with the reflection boundary. Consider the cotangent factors,
they are singular when the argument is zero.

"
D(1) 77_+2(g AP 0 ¢ =¢' -7, SB, surface 0 is shadowed

- —- ]
D(2) - (¢ - 8% =0 o =¢' + 7, SB, Surface nW is shadowed

2n
D(3) LA +2(g + 9 0 $=(2n - 1)m - @', Reflection from surface nTl
D(4) 7 —2(3 + Y 0 ¢ =7-¢', Reflection from surface 0
!
\p(4) | P
§' l,a——-‘““\f»._\
A b
e \ 1”° Y [sB \
\ { 0 ‘re ! i o
// //I//f7' ﬁzgjﬁr“"//’ /’//'///
SB 7 A,
/
,/D(2) )
4 nmr s hT
Ny
;]\o //RB
s' T// 0
NI
N \\
\
D(3) nT
\ rB
\
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Above are the three possible types of incident rays. When the diffracted ray
is near one of the transition boundaries (SB or RB), then that term will
dominate the diffraction coefficient. We will continue to associate each
portion of the diffraction coefficient with its transition boundary.

The diffraction coefficient is not infinite at the transition boundaries
because the cotangent is multiplied by the transition function, F(x).
]

, ~z~7~
Fx) = zl/JG§~ f?J)i//PE?—J It
'3

This is the form of a Fresnel integral. The function varies between 0 and
1, and approaches zero as x approaches zero. For large arguments it is
one. The magnitude and phase are plotted on page 727.

+
a8 £ 8') = 2 Cos’(( 2 n7N" - (b 9'))/2)

in which Ni are integers which most nearly satisfy the equationmns
27711N+—(¢i¢') =T

and

27a N - (@ = @") -7

i ro T . . .
The terms L™, L7, and L T are distance parameters which are determined by
the requirement of continuity across the various transition boundaries (SB
or RB).

L' is associated with the shadow boundary.
L= s,(P"""S)BlP; Sow’ o
R(p+s)(p+5)
and‘p are the principle radii of curvature of the incident ray. pl is

t%e radlus of curvature in the incident plane. S is the distance from the
diffraction point to the far field point.

Consider a curved edge as shown below. The edge has a curvature a with
the direction from the center of curvature given by ﬁé.

™
o

/,

A
n

———
-
n

N
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Chapter 15 GTD Analysis

There are two normals to the planes 0 and n at the edge; i and .. The
reflection boundaries are with respect to these normals. For waves reflect-
ed off these surfaces,_ the radii of curvature will be changed. The
distance parameters, L°, are associated with each of these sides.

sle’+s) AR 5w B,
fﬁb(ff%+'§)(fi°*"5)

.
L =

L. S ﬁ’am+ s) £ sm “Bo
fgw(f¥q+jo(k{n+‘§)

ro and ¥O are the principle radii of curvature of the wave reflected
£1 P2
from surface O.

fllm and F;n are the principle radii of curvature of the wave reflected
from surface n7.

_L_ —_ / _ 2(;,\0‘ ﬁe) (§I‘ ao)
fe’ fe a smw?Bs
; | 2(R Re) (3 1)

)o;'\ }Oe‘ aswt Ba

We have the general case which will simplified for various special cases.

Far Field: S —» oo
X (ol sn? ro "7
[i= LIRSS o Jro - AP, “sin'B, = P R "5 B,
( ro
fe fe Pe"

Spherical Wave Incident, General: '011_ - F:ZL - PZ - g
LZ — SS’ S 7“',50 jre— S (@°+ S )ﬁmf’:o 5/4\/",5(;
s+s' /De"O(ﬁro+5)(f;o+S)
Lo SE+S) PP s,
P+ s) (P + )

Plane Wa\}e Incident:

1 i_ i
Fl - 102 h Pe -
L=s 5‘”"356 1'% & L™ are the same as before
728
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If we are in the far field, Lt approaches infinity and the transition
function approaches one. But we are also at the caustic of the incident
wave and cannot expect the field to be accurately predicted.

Spherical Wave Incident, Far Field:

ro _ro SinZIB
i - g SinZIB Lro - £1 F2 (e]
o Fro
rm rn ., 2 e
LI P1 P2 Sin B,
m
Fe

]
Straight Edge: a —» oo !

N
fe° pan Qs

€ e

o S(FrS) PR Swpe
Pe (P'+ s)(,o,f +5)

Lra = 3 .()oez'/' s) f/szm S 2/50 Lrn _ 5([3;‘ +S)ﬁrnﬁ:n5w560
P (g e 5)

F P+ + s)
Not much has changed because ro ro,

1° P2 'orl:n’ and lo ;n depend on the local
edge radii of curvature of the two faces.

Straight Edge, Spherical Wave Incident: F o= gt

. . ' 2 , ro ra 2 S(S'_/_S) FfﬂP"nS,Nz/Bo
L= SS S Bo Lro___ s(s +S)/°. f}o S B, ':n= g 7 zm
s+’ s'(Brs) (P +3) S’()a, "+.s)(,0,_ +5)

i _ L) ¢ —_ /
Straight Edge, Cylindrical Wave Incident: )012'—"” ﬁs =790 - f, =S

fi-—vaﬂ r;o—voﬂ Jolz:n—+°<7

rn
[_L':,E_:ﬁ__ L”°=_iﬁ°___ e S
S+ S’ 6ro+_s /o,"'+5
Far Field
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Wedge with Plane Sides
The reflected rays will have the same radii of curvature as the incident ray.
ro _ rmn_ i ro _ rm _ i
F1 = f1 £1 P2 = P2 £
(o SE+S) PR smp
Pépits) (pl+s)

ro = s(ee’+ S)ﬁ"f’zf s’ Bo o SP+s) LLpL A,
e (pi#s) (Pa+3) Pe (pi+3) (P +3)

We still have FZO and p]e:n because the wedge may have a curved edge.

Wedge with Plane Sides, Spherical Wave Incident

» / ra V4 L
L= sSSs , S z/go L= S(Per:'5> 5 5/4/,30
S+5 Fe s{+s
T

1™~ s(pe"+s) (s'sw s
Fern S"f’j

Wedge with Plane Sides and Straight Edge

The reflected rays will have the same curvature as the incident ray and the
curvature in the diffracted plane is the same as the incident plane since
a (the curvature of the edge) approaches infinity.

Li _ Lro= Lm=L
_ S(pe+S) P st B,
Pe(pir)(pits)
Spherical Wave Incident: )oi = f; - Pi = g
= ._Jéél__ Szvz
- S+s’ 7
Cylindrical Wa&e Incident: /30 = 90°, f’i‘ =3S', P; = 'oi —y o0
/
— S
L= _5_._;
S+s
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E PLANE ANALYSIS OF A HORN

We will use the problem of finding the E plane pattern of a horn to demon-
strate the use of the wedge diffraction coefficient. The problem easily
reduces to 2 dimensions because we are only interested in one plane. This
also avoids the extensive geometry required for a 3 dimensional solution.

Consider the horn designed on page 224 and analyzed on page 574.
1

Frequency = 8 GHz

~_E Plane 8.38

«

18.93 __J
\#2
The angle of the sides from the center line is Tan_1(4.19/18.93) = 12.5°.
We will analyze this by a cylindrical structure with a H_magnetic line
source placed at the vertex. This requires Neumann boundary conditions:
aHz/axl = 0; it gives TE waves and uses hard diffraction coefficients
as spelled out on page 721. We discussed the geometric optics fields on

page 703. It is bounded by the flare angle of the horn and is a uniform
amplitude as shown on page 732.

—}

We have edge diffractions from the termination of the sides. Consider the
diffractions from edge 1. These will radiate in all directions except the
horn itself will block some of the radiation. If &« is the slant angle of
the side, then the range of the pattern angle, 0, for diffraction from
edge 1 is given by

-7/2< 8< T+« edge 1 diffractions
Similiarly, the diffractions from edge 2 will be blocked by the horn.
- -xg 0 <77/2 edge 2 diffractions

The diffractions from the edges will be of the form

gd = wl ’D -\/—/-)-— Q—JKS
zZ z h ,S(fyps)

H; is the incident wave at the edges. Consider both edges; the radius of
curvature is infinite, therefore the spreading caustic in the plane of the
edge will be the same as the incident wave.

1./p = 1/)02 (pp. 723)

Since the incident wave is cylindrical, P—><° and the spreading factor of
the diffractions is 1/J S where S is the distance from the edge.
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~
B
SB™

It is indicated on the drawing above that the shadow and reflection boundaries
are the same. We have this because of the grazing incidence on the sides.

The geometric optics fields given on page 732 includes both the direct and
reflected radiation. 1In this case we cannot separate the two contributions.
We normally do not consider grazing incidence to be reflected, but if we

take the limit as the angle between the incident ray and the surface
approaches zero, for any angle greater than zero there is a reflected ray.

The combination gives the following field.

2 Hzo - kR

— e

§ /R

R is the distance from the virtual apex. The reflected waves have the same
caustic distance as the source because the sides are flat. We only consider
the incident wave on the edges to be direct from the source and not includ-
ing the reflected ray. It is convenient to normalize to the sum of the
direct and reflected rays.

o "0 -3 kR
z vq{

The incident ray on the edges is giﬁen by

-j k Ro

e "
[x,

B o= 5 /2
Z ZO
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R0 is the slant length of the horn. This giﬁes us the diffracted waves.

Because the sides are planes, Li = 1T% = 1™ = L. The distance parameter
for cylindrical waves is
RO‘S
L — since R = S'
R0+S

The diffraction coefficient has been written as a function of four parameters.
p', the angle of incidence is zero. The wedge angle constant, n, is two
because we assume a thin wall on the horn. The angle @ to the field point
is measured from the walls of the horn as shown.

Edge 1 ¢1=7T—o<+ e

Edge 2 ¢2 =T- - 8
Notice that the angles @, and ¢2vare measured in opposite directions. The
amplitudes of the edge d%ffractlons are plotted on page 735. Notice the

sharp transitions in the back lobes where the horn shadows the diffractions.

Now we must combine these patterns. First, we will consider only the far
field: S —>-0. We make the usual far field approximation that:the differ-

L=R S =R

ence in distance has no effect on amplitude and we can separate out the term:
e—JkR
J R

The horn is represented by a three element array. The phase reference point

Reference
Plane

734
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is the vertex of the horn. Of course, each element of the array has a

different pattern which is determined by the G.0. field or diffraction

coefficient. The distance of edge 1 to the reference plane is given by
Ro Cos(® - )

while the distance of the second edge is Ro Cos(8 + =)

The sum of these three components is
-j kR

H = H _(L.+ E———‘th(RoJf—oc+ 6, 0, 2) & k R Cos(8 - )
z 5 FE;
SR | -jkR
e o Dh(Ro,'ﬂ'—o(— 6, 0, 2) eJ k RO Cos (8 +0()) e

2 JR, fr
This expression must be applied with restriction on the terms. The first
term, 1., represents the G.0. field; it is restricted to the flare angle
of the sides. The second term is the diffraction from edge 1; it is
shadowed by the horn. The third term is the diffraction from edge 2 and
it too is shadowed by the horn. As long as we take into accourt the
restrictions on the terms, the above expression is the fields of the

horn.

Using the short hand notation, the diffraction coefficient is the sum of
all four terms.

D, = D(1) +D(2) + D(3) + D(4)

Because the reflection and shadow boundaries are the same,

D(3)

D(1) (surface 0 shadowed)

D(4) D(2) (surface n7" shadowed)

Dh = 2(D(1) + D(2))

The phasor sum of the expression for the pattern is plotted on page 737.

The pattern is good over most of the front lobe and predicts the backlobe.
We can notice that there is a discontinuity in the pattern at * 90°. This
measn that there is an unaccounted for diffraction which is important in
this region. But the inaccuracy has a limited angle variation. In general,
this is true of all discontinuities in the patterns found by GTD.

The factor which has not been accounted for is double diffraction. Edge 1
has a diffracted ray in the direction of edge 2 and vice versa. These rays
will be diffracted by the second edge.

736
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!
Ro |

2R, Siw X
Z

The diffraction between the edges is near field; the distance parameter becomes

. 2 RR, Sinx _ 2 R, Sing
R + 2R Sink  1+2Sing
p' =0 P = T2 -x for both edges.

._ij

e [¢]
b4o) ) Jﬁi:

The incident wave on edge 1 is q

The ray diffracted to edge 2 is

~jkR .. .2 R_Sing -j2kR_ Sin
H,= B S—=p (——— , M2 -, 0,2 = S

ZJ Ro 1+ 2 Sinx ,’ZRO Sin «
This is the incident wa?e on edge 2. The diffracted wave is diffracted by
edge 2.

L =2 Ro Sin o (far field)
d .
H, = Hp, Dh(2 R SinX , M- X + 0, /2 =X, 2)

As indicated aboﬁe, the incident wa&e H21 = le from symmetry and the double
diffraction from edge 1 is

d _

Hyp = H
Notice that the angle of incidence, $#', is no longer zero. The magnitude of
the double diffractions relative to the total pattern is plotted on page 739.

H th(ZRo Sin X ,7T-% -9, /2 - X, 2)

The double diffraction is a two element array at the edges. The pattern of
the double diffraction is given by

~jkR 2 R kR Sina
—Tr/z - X so) (
J2 R sine

H

zo—2p (—2
W T2 sinoc’

2 [’
D, (2 R_ Sino¢ ,7- o+ 0, T2 - ) eJkRCos (0 )

ijoCos(G +0<)) e-'jkR

<

+ Dh(2 R, 8inX , 7- X - 9,T/2 -x) e
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When this array is added to the pattern on page 737, we get the pattern on
page 741. There is still a small discontinuity at € = * 90°, but it is
small and only effects one angle.

We can compare the GTID pattern with one found by aperture integration

which is plotted on page 742. The general patterns are similiar only

the sidelobes of the GTD solution are higher. The aperture integration
method fails to predict the pattern sidelobes accurately because it was
assumed that the fields outside the mouth of the horn are zero. This is

not the case. Since GTD has not made any such assumptions, it can accurately
predict the pattern.

SLOPE DIFFRACTION

When we consider the H plane pattern of a horn, we find no edge diffracted
fields because the incident field vanishes on the slant sides. But the
pattern is not the geometric optics field given on page 703. To get an
accurate pattern, we must include higher order diffractions. Slope
diffraction is a second order diffraction which depends on the space
derivative of the incident field.

Slope diffraction is like edge diffraction in that it satisfies Keller's
extension of reflection to diffraction (pp. 718). The diffraction dis in a
cone with its vertex at the point of incidence on the edge. The half angle
of the cone with respect to the edge vector equals the angle of the incident
ray with respect to the edge. The slope diffraction is defined in terms of
the planes of incidence and diffraction as shown on page 720. Slope
diffraction is written

S B B f——"e omiks

E"é o -e, E;ﬁa S(s+p)

This is the same form as edge diffraction on page 722. One caustic of the
diffracted field is on the edge (S). The other, P , is given by

= —Lf —- ﬁ;‘(g'-g)

(8
fe aS/MZ‘/Bo

e
f? is the radius of curvature of the incident ray in the incidence plane.
a 1is the radius of curvature of the edge. A is the unit vector from the

~
center of curvature of the edge to the diffraction point. S' is the incident
ray unit vector; § is the diffracted ray unit vector.

e = ———i—~—~ [16}D%L7 )
Sih JKsmw B, o¢’ on’
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Total E Plane Pattern of Horn
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[ aDs,l, §£ = —e“ﬂ%‘ [cscz(ﬂ—g\f—fl) F.; (K Lt Q+(¢‘¢'))
g’ on' 4n 2Kk SIN*Po

’ rn

- csc (T= ) £ (ko (po ) LS |

The slope diffraction coefficient uses a different transition function.
l

oo
. 3 . -, T
6(x)=J2x+4xﬁeJ’([ef T
VX A
This is related to the first order edge diffraction transition function.
Fs(x) = j2X (L. - F(X))

The functions a+ and a are defined on page 726 along with Ll, Lro’ and Lrn.
L for various special cases are given on pages 728 - 730.

The slope of the incident field JE"/dn' is in the direction of the a¢,
coordinate. This can be found by a dyadic.

vEL

The gradient of a vector is a dyadic. The derivative in the direction of aw,
is given by

on’

In most cases we can ignore the curvature of the edge surfaces, if any, for
this secondary diffraction and assume flat plate reflection. As with edge

5;,,,- V-E-("‘-“ @/‘Vér°= Zp/‘ Vgrn

diffraction, each term in the slope diffraction is associated with a shadow
or reflection boundary.

aDsb -
3¢') = D) -D(2) (D(3) - D(4))

The various terms, D(i) have the same association as given on page 725 except,
of course, these terms are different.
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H PLANE ANALYSIS OF A HORN

Slope diffraction is used to find the H plane pattern of a horn. This
problem reduces to 2 dimensions and is handled by a cylindrical wedge and
cylindrical waves. The dimensions in the H plane of the horn analyzed on

page 731 are given below. ////')\
o
200 }
<::ic( H Plane /38

Frequency = 8 GHz

x =Taw 1(5:69/20,06) = 15.8°

i

We analyze this using an electric line source, E_, placed at the vertex of
the projected sides. The G.0. field of this horn was given on page 703.

GO o IkR 77 Tan ©
E = Cos( )
Z Tan &«
R
EGO = 0 elsewhere

The amplitude of this field is plotted on page 745. We can see that the
pattern is zero (-40 dB) beyond * o and that it tapers to zero on the edges.
Since the incident field is zero at the edges, there is no first order edge
diffraction.

To find the slope diffracted field, we must find the space derivative of the
incident field at the edge. The plane of incidence is out of the paper,
since the edge tangent is out of the paper. The vector a¢, is normal to
the surface at grazing incidence.

OEC_ 1 2E'R)

an’ R, I’
Rod¢' is the differential length dn at the edge. SB -
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H Plane of Horn; Geometric Optics Field
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On edge 1 a¢1 = - ©o6.
JE_ _ 1 aE"(f,,)/
on £, o6 0=«
KR,
= "—————-eJ P9 Cos WTMG)}
= e /KR g

R7e Sw(2x)
We get the same expression on edge 2.

The edge diffractions only occur over a limited region of @ because they are
blocked by the horn.

-7[2 € 0T+ X edge 1 diffractions
- -xX< 8< TM/2 edge 2 diffractions
The diffractions from the edges will be of the form.
E;l = _a_Ei _a___Ds / £ e-JkS
on 98’ Vs(p+s)

The radius of curvature of the edges is infinite (a—~<2) and the spreading
caustic in the plane of the edge is the same as the incident wave which is
infinite for cylindrical waves.

/
[ p -
s(p+s) Vs

The soft slope diffraction coefficient is used with the Dirichlet boundary
conditions (Ez = 0).

£ ovkS [“/‘ aD;][ oV ¥R 1 )
< 2ys L,k 9% 1?03/’- SN (2x)

Because there is grazing incidence on the edge, the direct and reflected rays
are the same and the diffractions must be divided in half because the direct
+ reflected ray has been reduced by a factor of %. The amplitudes of the
slope diffractions in the far field are plotted on page 747.

We will only consider the far field. The distance parameter, L, becomes RO
and we can separate out the term

e—JkR

'3
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We analyze the horn as a three element array with the phase reference at
the vertex as was discussed on page 734. The total field including the
array factors is given by

~j KR : _
£ =g+ T { ‘3‘;{(&,,77—0“6, 6,2) sk RoCos (6 )
/2K :ﬂ,/é- s (2x)

~jKR
+ 92 (g, T-x-0,0,2) efkeac”(é“"‘)p el
o8’ 3

Each term radiates only over a limited region. The diffraction terms are
shadowed by the horn. The G.0. field, 1., is restricted to the flare angle.
The combination is plotted on page 749. For comparison, the pattern obtained
by aperture integration is drawn on page 750. The GTD solution is quite
close. The small sidelobes at #90° on the aperture integration solution are
beyond the region of validity. The GID solution as given does not predict
the backlobe because we ignored the E plane edge diffractioms.

CORNER DIFFRACTION

Any time there is a discontinuity in a structure, it becomes a new source of
diffracted fields. All the examples given so far have been reduced to two
dimensions where there are no ending of the edges. When we consider three
dimensional structures, there are corners. These are new sources of diffract-
ions. The diffractions are associated with edges which have been terminated.
Edge diffraction is handled as always but there is an additional term due to
the corner. Since each corner arises from two edges, there will be a corner
diffraction associated with each one. Corner diffraction is in all directions
and is not bounded to a cone like the edge diffraction.

Consider the corner diffraction associated with an edge.

N
)
SN NN

Corner diffraction is worked out for an incident spherical wave on a straight
edge and has been formulated in terms of equivalent currents.
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Total H Plane Pattern of Horn
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[N

E T Zo| /s v B —
P: —_ \/SA//BQS < F(kL-Ca(n-*'ﬁco_/e()e ,//(S
E¢° MY (Cos fo. — cos ) 49rs
| __|&@)|( @)% ar %
: K
M E¢'(Oc) Ch (QE)ZO

i i .
E'g/ and E;, are the incident spherical waves on the corner. Z 1is the
impedance of free space and Yo is the admittance. The distanceoparameter
L is given b

c 58 y 5, S

c S + 8§
c

The soft and hard corner diffraction coeffficients are evaluated at Q_, the
point of edge diffraction to the same point. €

. = - [ FkLa($-8) | f La(p-80/0 )2\
5,h ' - F
2/2rk SwfBs L Cos(#-$9/2) Kle a(m+ Boc =)

T FlkLa(p+4) \F{ Lald+ B
Cos((B+4)/2) KLe a(T+ Bo —/&)”

s' g" SinZEo
st + s"

The function a(x) = 2 Cosz(X/Z) and the distance paramter L=

The corner diffraction occurs only when the edge is visible to both the source
and receiver. If both edges are visible, then there is a contribution from
each. The absolute value of the transition functions assures that there is
not a sudden jump when it passes through a shadow boundary.

It is necessary in any three dimensional problem to include corner diffraction.
As the source and receiver become further and further away, the corner diff-
ractions start to deminate over edge diffractions since it is derived from
equivalent currents which are valid at the caustic.

EQUIVALENT CURRENTS

GTD fails to predict fields at caustics. Usually the loss of the possibility
of calculating a few points is unimportant. But in those cases where it is
required, equivalent currents can be used. It is important to realize that
the equivalent current concept can be used everywhere and not just at caustics.
It is easier to use edge diffraction coefficients for most points. Edge
diffractions are replaced by equivalent edge currents as sources. This
process requires line integrals along the edges. Edge currents can also

be used to predict the diffractions from a finite length edge although

corner diffraction coefficients have eliminated their need here. Corner
diffraction coefficients were derived from equivalent currents.
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Equivalent currents are postulated that would give the same diffracted fields
from an infinite edge by using vector potentials as would diffraction coeffi-
cients. Because we use an infinite structure to derive the fields, it reduces
the three dimensional problem to two dimensions. On page 721 we derived
edge diffraction in terms of Z directed electric and magnetic fields which
use soft and hard diffraction coefficients, respectively. The solution of
the two dimensional fields derived from vector potentials leads to a scalar
potential similiar to waveguide expansions which is only in the Z direction.
Because the fields are radiated radially outward, only the Hankel function
of the second kind is used to describe the fields.
_ L M @
% 4/ //o (KF) % - 4,/’ 'L/ (kP)

I is the electric current, M is the magnetic current. The large argument
approximation is used to equate the fields derived from these potentials
to the two dimensional diffracted fields.

. e— ./' ks

-/Ks
d J
E; = £ Lk

d ¢
Hi= He D, E—

/s

When the Z directed electric and magnetic fields derived from the potentials
are equated to the diffracted fields, we can solve for the equivalent
currents.

= 2/ _/ (74
Z ,;72_5; 05‘ F—‘—‘ZTI’K e )

M= UL o, e &

The equivalent currents can be related to the ray fixed incident fields by
using the parallel and perpendicular components in the incidence plane.

_ 2/ ¢ ’
L = 4 £ , Ds 2wk G’J(n—/")
nKk P

. . 7 (4)
M= 2. ES, D, [2mk €
K
The vector potentials are found by integrating the currents along the edges.

- =, _JKIF-T _ —, JKkIF-¥Y
— I iy ’ J -
A / - _, .q/‘é F = /M e 'Clze,
4T Ir-F 47 IF=F'l

The fields calculated from these potentials are no longer geometrical optics
fields and therefore are free of caustics.
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E=-;wud + — V(v-A) —~VxF

JUE
57(vr°if)
A8

In comparison to the rest of GID these seem cumbersome, but they eliminate
caustic problems such as the backlobe of a parabolic reflector when the
whole rim lights up and not just two points. Another important point is
that the equivalent currents can also be found for slope diffraction
coefficients. Remember that these are not real currents because their size
depends on the direction of the field point.

EI = V’X';r —:/"Cd45 i? -+

DIFFRACTION FROM CURVED SURFACES

One method of considering diffractions is to think of surface waves. Surface
wave antennas can be analyzed as radiating only from discontinuities. Between
them the wave is bound to the surface (see page 357). The difficult part was
finding the radiation pattern from each discontinuity. Diffraction coeffici-
ents are the radiation patterns. The edge of a wedge or the end of an edge
at a corner are types of discontinuities we have already considered. We can
also consider a curved surface as a discontinuity which will radiate energy
from a bound surface wave. Normally a perfect conductor cannot support a
surface wave, but when considering GTD, it is a handy concept. A wave is
bound to a surface by slowing the wave (see page 363), but the wave traveling
on the surface of a conductor is not bound because the phase velocity of the
wave remains the same as free space.

If there is a source near a curved surface, then space is divided into two
regions as shown below. As discussed on page 705, the shadow and reflection

.Source

are the same. The transition between the two regions must be continuous. To
achieve this we will combine the reflected and diffracted fields in region I
so that there will be continuity with an only diffracted field in region II at
the boundary. Wedge diffractions were expressed by a single expression

which was valid in all regions. The functions are discontinous but a single
expression is used. For diffractions from curved surfaces, different expres-
sions are used in the two regions but with a requirement of continuity across
the shadow/reflection boundary.
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The wave which propagates along the surface sheds energy tangentially. It
travels from the source to the shed spoint along a geodesic. A geodesic is
a curve of minimumdistance between two points on a surface. In differential
geometry it has a broader meaning but for our purpose, the minimum distance
definition will serve. We will express the field in terms of ray fixed
coordinates along the surface wave. L The first coordinate is the normal to
the surface, ™. A binormal vector, b, is defined orthogonal to™ and to a
tangent vector on the surface, t, such that they form a vector triad.

P
2 x b = ?

T is in the direction of the ray. On a general surface the direction of all

three vectors changes as the wave moves along the geodesic. A surface path
which has a changing binormal vector is said to have torsion.

geodesic path

Radiation in the presence of a curves surface is divided into three types of
problems: radiation, coupling, and scattering. The type of problem depends
on the location of the source and field measurement point. A radiation prob-
lem has the source located on the curved surface and the field point is located
off the surface. This could be an antenna mounted on a missile or aircraft.
The second problem is coupling. Both the source antenna and the receiving
antenna are mounted on the surface. We can use this to find the mutual
coupling between two antennas on a vehicle. The scattering case has the
source antenna located off the surface and the field point is on or off the
surface. We can approximate the other two problems with the scattering
formulation by locating the source antenna slightly off the surface. These
three problems are diagrammed below on circular eylinders.

Source
_ _ _ Squrce_ _ __ — _ _ _Source '\~ —_—
\ e —
\
\
Field
. N
Radiation Coupling Scattering

N\

In radiation and coupling problems the source point locates a tangent\blane
which separates the lit and shadow regions. The radiation from the source
is either from an aperture or a short monopole. The aperture is replaced
with a magnetic current as was done on page 176 by using the equivalence
theorem. The aperture is replaced with an electric conductor (see bottom

754
Fundamentals of Antenna Design by Thomas Milligan Copyright 1981



Chapter 15 GTD Analysis

of page 177). 1In this case we do not use the method of images and the magnetic
current associated with a differential area is given by

M(Q') da' = E;(Q') x n' da'

Q' is a point in the aperture, E_is the electric field, and n' is the unit
normal vector. The magnetic current multiplied by a differential area defines
a magnetic current moment.

M(Q') da' = dp_(Q") =E,(Q") xn' da'

Similiarly we can have a short monopole on the surface which is used to define
short electric moments.

dp_(Q") = I(1') d1' '

The total length of the monopole is assumed to be short with respect to the
radii of curvature; otherwise we have a scattering problem. The electric
field of the source is found by integrating over these current moments.

In the shadow region the ray leaves the surface tangentially and has electric

fields in directions given by 7 and b shown in the diagram above with the

direction of propagation given gy t,. The directions in the 1lit region are

ray fixed also. The direction to the 1lit region field point is §. Two vectors

are defined normal to this. B is the binormal in the surface. The vector

product will give us a normal to both of these.

=% x

s is at an angle 9 with respect to the surface normal. The three vectors
?&, and glstlll form a vector triad with 1 n as the surface normal and t

as the tangent vector in the surface. S and gl lie in a plane defined by the

binormal, ?y.

Field point

The differential electric field in a lit region due to a magnetic or electric
moment is given by

— ' - = -/ks
dE = .J_g. ’ .Tﬁ E’ J

A 1 /\/

:,';,e___a,i(Hz(?g) +-7:’1FC0592)+ '{2"}7;/:(056‘4—6

o

+ Z/j\z’b’\ (s%s9) -7,°F cos?8°)
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The creeping wave in the shadow region sheds tangentially from the surface.
The differential electric field at the field point is given by
=K 45 . T~ /2 /09(62) ka ____ﬁ__.. J'st
ar 2 T\ @) g0 et ©
A AN\ -
b'n H(g) + b'bT, S(§)+ b S(§)
A kR
, 7;5(5) 2= J?# 2, =377
They are defined by

), and 5{’) are Fock functions.

s in the complex plane.
e’:/' f)é - '(g"T _—
— /" Swlw) 9T
mw .
0 e/ s
ev “/wl'(t’) dT
e/

-/ eV (fl)a/s
m(Q’) Jr

H(E) =

= L
fea e—j;‘f/zulz()az—

q7e7/2¢§

z( f)
) e"J'gr/w,_ () 4T

o oV s
© i)

F- 28
@ )

(§) = 1
>t m(Q)\/_

~m,(Q") cos 8"
o7t -t}
dt
Z’T/s

°°-J€'

l:
is a Fock type Airy function giﬁen by the following integral

/
W—____.-
lz""’J,_.
ooe"‘./

wW.o(T) =

4
fg<*) is the radius of cur&ature of the surface along the ray path on the
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Kp,(Q) /3

m(Q) =[ y

)
3
] m(@) = m(ap')[: +73ch326‘]

5

The Fock functions are tabulated functions like sine, cosine, or Bessel

functions.

= SUY) - HYGEY) cos gt

| + T,% cos &f

To is the torsion factor.

7, = 7(Q)p(Q)

Cos 2o’ siwix’

2

- ,:_Swz«’(' ! ) o
@] @)

R@)  R(Q)

R Q) R, (@)

R, & R, are the principle radii of curvature oﬁAthe surface with o’ the angle
between the direction of R1 and the direction 't on the surface.

is the radius of curvature at the diffraction point (tangential shedding)

in"the direction of the binormal.

One of the caustics of the diffracted field is a line on the surface in the
direction of the binormal and is defined by a curve 2(Q). The rays travel

in bundles/ tay tube) from the source point.

For a differential distance

along the curve Q(Q), the rays come from a differential angle, d ¢%, at

the source.

Q< dﬂ
AN R
d‘l/o ~N S
NN

Source

n(@)
Diffraction
Point

If the torsion is zero or the problem can be described in two dimensions, then

these expressions are simplified considerably.

To find the total diffracted

field it necessary to integrated over the aperture or monopole current

moments.

SCATTERING FROM A CURVED SURFACE

Scattering is divided into lit and shadow regions with the requirement of
continuity across the shadow boundary. In the lit region we have a direct

ray plus a reflected ray.
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. — = BFF"D' ‘J‘kS‘,.
—t ¢ ° 2 e
E (PL_) -+ E(QR) %ﬁr*‘sr)(f’zr"'s)

T and f92 are the principle radii of curvature of the reflected ray given

on page 71 Qr is the point of reflection and s is the distance to the
field point.

The reflection dyadic, ﬁ, is modified to provide a smooth transition at the
shadow boundary. It reduces to the standard reflection dyadic far from the
boundary.

R = RS aL_qL + Rh a, ay

RN =y Yk Sl B(EY
Ei- [ FLGJ 2\/'7?[/—1:(75)]—'_ Y ¢

F is the transition function used with edge diffraction.

| I

X = 2 k LI cos®et
B i i r

LL - (Fl + So)(PZ * ’So) _ S(P2+S)
(f:} + SO+S)(€;+SO+S) Jo;

For cylindrical or spherical wave incidence this is reduced.

P o
LL - S' S r
s'+ S

PS h( %L) are called the Pekeris caret functions.
td

- v(T) “jxrdz'
£ (x) = .c0)
Vi) _-;xT
) = = YT dT
3,(" ), w

L ov(D)
2, V() = W (T) - W () VI(T= oo

L
f is defined on page 756.

The diffracted field in the shadow region is given by

/% e'J'/(ScI
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One caustic of the diffracted field is on the surface at the diffraction
point (tangential shedding), ‘fZ is the caustic distance in the other plane.

Point 1 is the attachment point of the incoming wave and 2 is the diffraction
point.

2.7 / :
_%- e/ 4 i d A Q//](Q,) —Jk't
Tspn= - \/mm,)m(al)\/;{zw/rr; 1= o+ E,,,(‘{)} 7@, ©

t 1is the length along the surface from attachment point Q, to diffraction
(or shedding) point Qz. 7 is the curve along the binormal and

’dn(@J
ICH)
is a measure of the spreading along the surface wave. m is defined on page

157 ;& terms of the surface radius of curvature. F is the transition function
and P( ? ) idis the Pekeris function.

kLig®

x4 =
2m (@) M ()

14 e+ s) (Pl + Ss) s(pr+s)
(!o,°’+s,,+s)((o}+so+s) pr

For spherical or cylindrical wave input: Ld = 0

€ is given on page 756. o S

These equations are rather involved but easily handled in a computer routine.
The geometry of any configuration is the largest part of the problem. Given

a general curved surface there is no formula to find the location of the
attachment point and shedding point at the end of a geodesic curve which will
join a given source point to a given field point. Usually a known diffraction
is picked and other points are found by incrementing along the curve by small
steps until the points are found.
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