Chapter 16 Array Synthesis

ARRAY SYNTHESIS

Chapter 5 is concerned with the analysis of arrays. In a sense synthesis
can be performed by analyzing many different configurations until a mental
pattern is established and synthesis becomes an efficient cut and try pro-
cedure. We must be able to accept this method. With computer codes avail-
able to analyze arrays easily, it is not reasonable to approach the problem
in this way. If a mathematical description of the required array can be
formulated, then optimization routines can design arrays or any other
antenna by letting the computer search for a solution.

The first technique of synthesis given here is just a search technique
which manipulates the zeros (or nulls) of the pattern. This is one step
easier than adjusting the element phases and amplitudes. The other methods
we will cover are more procedures moving from specifications to design.

SCHELKUNOFF'S UNIT CIRCLE METHOD

This method consists of manipulating the zeros of the array pattern to
achieve a desired pattern. We can use the representation to describe any

uniformly spaced array, although it
with large numbers of elements. It
manipulating the placement of poles
array only has zeros to manipulate.

A linear uniformly spaced array was
We can easily extend this to arrays

is difficult to use it to design arrays
is similiar to designing networks by
and zeros in the complex plane. The

analyzed on page 105 with equal amplitudes.
with arbitrary feeding coefficients.

Direction of
Radiation

Reference
Plane
\
I\ I I I

The array response will be symmetrical about the Z axis.

If we define

Y/ =kdcCos® + §

where & is the fixed phase shift between elements, then the pattern of the

array is given by

E = 0

Ii is the amplitude of each element
involving both amplitude and phase.
by defining:

I, + Ilej‘p + Izejzw+ ISej3w + Iaejaw+

in the array. It is a phasor quantity
We can further simplify the notation
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Chapter 16 Array Synthesis

iV

W= e

which reduces the array pattern to

W2 + I3W3 + 1 W4 + ...

E= 1 2 4

0 + IIW f I

At this point the coefficients of the array feed are arbitrary. Remember that
implicit in this discussion is that the patterns of all the elements are
identical. In fact, we will only be concerned with isotropic radiators. The
element pattern can be added later with pattern multiplication.

The array factor is given within an arbitrary constant by the following
polynominal N

£(W) = Z aan

n=0

This polynominal has N roots which are the nulls of the pattern in W space.
The coefficients, a_, are complex which means that the zeros can be placed
anywhere in the comglex plane and not just in complex conjugate pairs as for
real coefficients. The N roots are denoted: Wi. The array polynominal can
be written as

f(W) = (W - Wl)(W - Wz)(W - W3) cer (W= WN)

We are not concerned with normalization. The amplitude of the array pattern
is given by the magnitude of f(W).

[E@| = W = W[ W =Wyl |W - W, oo |W - W]

3 -
|[W - W,| is the distance from the root W, to W in the complex plane. W has

1 . . .1 . . . .
become  the pattern variable. W is restricted to lying on the unit circle in
the complex plane since

W= ejw

which always has unit magnitude. The limits of W are determined by the spacing
of the elements and the constant phase shift, § , between elements.

0=0 v,
8 = 180° W,

9
e .
When @ increases, then {/ decreases. / ™ W = G‘JW
6=0
s o
Y
!
Y

kd+ §

-kd+$

—-
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Chapter 16 Array Synthesis

There is no 27 limitation on either ¢¢_ or .. The number of times the
unit circle is travelled is determined ﬁy the element spacing, 2 k d.

yV and /. are the pattern limits in k space or the visible region. If
(¢s - ¢ .| exceeds 277, then there will be a possibility of more than one
main lobe (grating lobes). This is the same as the visible region on a
polar diagram such as on page 107k where a grating lobe has appeared. From
this we can see that it is only necessary that the visible region includes
the beam maximum point twice for grating lobes.

The W space polynominal for a uniformly feed array can be obtained from page
105 by inspection

f(W) = %%-E—%?l for N elements.

The zeros of f(W) are the N zeros of WN = 1 with the zero W = 1 removed.

- eJZTrl/N

i i=1, ... , N -1

These are uniformly spaced on the unit circle with one missing at ¢’= 0.

Another special array is the binominal array discussed on page 113. The
elements amplitudes are given by the binominal coefficients which means that
the associated polynominal of the array is given by

ey = i + DY
There are N-1 zeros at W = -1.

On the next few pages are examples of a few array patterns using zero diagrams.
The pattern of a ten element array with spacings of 0.5 wavelengths and zero
degrees phase between elements is drawn on the top of page 763. 1In the
complex W plane, W starts at 180° and moves clockwise as 8 increases. Moving
from 180° to 0° on the unit circle we can see that 5 zeros are encountered
which show as nulls in the pattern. Because the zeros are symmetrically
placed on the unit circle, symmetrically placed nulls appear in the pattern
from 90° to 180°. With half wavelength spacings the unit circle is completely
traversed in the visible region.

The W plane diagram and pattern of an endfire array with quarterwave spacings
is drawn on the bottom of page 763. The locations of the zeros have not
changed from the diagram on the top of the page, but the start point and the
distance traversed along the unit circle have changed. With quarterwave
spacings between elements, the distance is only half-way around the unit
circle. Without the -90° phase shift between elements the start point on the
unit circle would be on the imaginary axis. Five zeros are encountered on
the unit circle going from start to finish and appear in the pattern on the
right. Of course, there is symmetry about the 8 = 0 axis. The increased
directivity endfire array (Hansen & Woodyard criterion) is obtained by
changing the start and finish angles on the unit circle as shown on the

top of page 764.
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Chapter 16 Array Synthesis

If the spacings between elements are greater than 0.5 wavelengths, then the
unit circle is traversed further than  once for © = 0 to 8 = 180°. The start
point is on the negative imaginary axis for element spacings

of 0.75 wavelengths and zero phase shift between elements. The pattern is
generated as the point moves clockwise around the unit circle 1% times to

the finish point. Because there is no phase shift between elements, S and F
are symmetrically placed about the real axis. Referring to the diagram on
the bottom of page 764, we can see that 14 zeros are encountered when moving
from start to finish. These nulls appear in the pattern on the right.
Although there are 14 nulls in the pattern, only 9 of them are independent.
We can use these 9 zero locations, N - 1 for an N element array as variables
to shape the pattern. It is not necessary to limit the zero locations to

the unit circle. On the top of page 766 is a pattern whose zeros have the
same angles as the uniform array but have a magnitude of 1.1. We can

expect that there would not be any nulls in the pattern which is seen in the
pattern on the right. When we multiply out the factors of the polynominal,
we obtain the coefficients of the polynominal which are the feeding coeffi-
cients of the array elements. The magnitude of the coefficients are no
longer symmetrical about the center of the array which is seen in the listing
of the coefficients.

We can change the sidelobe levels or remove lobes in particular directions by
manipulating the locations of the zeros in the W plane. The sidelobes in a
region of space can be reduced by moving the zeros closer together. Any time
we do this, we can expect the main beam to widen or some other sidelobes to
become greater as the zeros are removed from these areas. On the bottom of
page 766 the zeros of a 10 element array have been moved toward the negative
real axis relative to uniform feed locations. This reduces the sidelobe
levels as the zeros move toward the binominal array (no sidelobes). The

peak sidelobe is down to 30 dB but the main beamwidth has increased from

the pattern on the bottom of page 764. We could decrease the main beamwidth
by moving the zeros until the sidelobes near 8 = 0° and 6 = 180° were also

30 dB. Because the zeros are placed symmetrically about the real axis, the
coefficients of the array are only real. The feed coefficients of the array
are tapered toward the ends. Since we can think of the array as a sampled
aperture, the results of aperture will hold in part here. On page 530 we
discussed the effects of high harmonic terms in the Fourier transforms

which show ' as sidelobes. The greater the taper and the lack of discontinui-
ties result in low sidelobes. An array is analyzed by Fourier series and

the results from Fourier transforms carry over. Hence the taper toward the
ends of the array results in low sidelobes.

We can shift zeros to place nulls in the pattern at selected points. Consider
the pattern of the endfire array on the bottom of page 763. Suppose we want

to eliminate the lobe at 8 = 90°. There are four zeros in invisible space.

We can move one of these zeros to the negative imaginary axis which corres-
ponds to 8 = 90°. The three remaining zeros in invisible space are moved until
they are symmetrical. The resulting zero diagram and pattern are given on

the top of page 767. The lobe at 8 = 90° has been removed and the nearby
sidelobes have been reduced. Even the beamwidth has been decreased. We

can get further reductions in beamwidth by moving more of the zeros into
visible space. We can obtain the pattern given on the bottom of page 767
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Chapter 16 Array Synthesis

when we move all the zeros into visible space. If we look at the angles
between elements, we see that they are near 180°. This means that the
mutual coupling between elements is quite high. The input impedance of each
antenna will be quite low and the stored energy will be high. There is a
large beam in invisible space because there are no zeros. This large beam
is stored energy and will greatly decrease the efficiency. On page 93 we
discussed a two element version of an odd mode array which also shows high
directivity but low efficiency.

This technique of moving zeros in the W plane is only suitable for arrays
with only a few elements. It can be used for any size array except that it
becomes unwieldly. One of the best uses is to find the feeding coefficients
for broadcast towers to give a desired pattern. It is necessary to put nulls
in these patterns to prevent interference between stations using the same
band. Kraus gives an example of one of these requirements: a pattern must
have uniform coverage between *45° about north (8 = 0) .and nulls due east

(0 = 270°) and SW (8 = 135°). Kraus solved this problem by using pattern
multiplication, but we will use the Schelkunoff unit circle method. We will
place the axis of the array along the N-S axis which will give us a symmetri-
cal pattern about this axis. Since there are only two required nulls, we

can meet this with 3 antennas. We will set § = - 90° to get an endfire
antenna array for elements spaced a quarterwave apart. The actual phases
between the elements will be determined from the zeros as well. Suppose a
null in the pattern is required at 6_. The zero in the W plane required to
give this is given by o

J@TIA s Cos 8+ &)

W
n

We need a null at 90°: Wl = er = -3 since & = - 90°

The other null gives us the angle of the second zero.
(360°) % Cos(135°) - 90° = - 153.64°

Both zeros are on the unit circle. We can find the array feeding coefficients
by expanding the zero representation to the polynominal representation.

-3 90°) (o _ =3 153.64°

W -e ) (W )

(W + ) (W + 0.896 + j 0.444)

W2 + (0.896 + § 1.444) W + (- 0.444 + § 0.896)

. (-]
2 4 oJ 53-18

w2 + 1.699 oJ 116.36

+

We will normalized to the phase of the first element (constant term of the
polynominal).

Kraus, J. Antennas, pp. 69, McGraw Hill, New York, 1950.
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2 -3 116.36° -j 58.18°

1Y) + 1.6944 W e + 1
At this point the polynominal respresents an unscanned array ( § = 0). We
must add the - 90° phase shift between elements.

_o [+] _o (]
2 od 296.36 j 148.18 1

W + 1.6944 W e
The phase shift (-90°) is added to the second element and twice the phase
shift is added to the third. The coefficients are the voltage feeding
weights of the array. If we normalize the input power to one and renormalize
the phase to the center element to demonstrate the symmetry, then we get

the coefficients given on the top of page 770 where the W plane diagram and

pattern are drawn.

We can improve the pattern by adding an extra element. We will place an
additional null in the pattern at © = 180°. The first two zeros in the W
plane are in the same places as the 3 element array. To get a null in the
pattern at © = 180°, we place a zero on the negative real axis. The W space
diagram and pattern of this array are drawn on the bottom of page 770. There
is however no improvement in the flatness of the response between * 45°.

On page 771 are two diagrams with the elements spaced further apart than A/4.
The distance around the unit circle from start to finish increases as the
spacings increase. In order for the start to be on the real axis, the phase
angles between the elements must be increased: - 108° for 0.3 wavelength
spacings and - 144° for 0.4 wavelength spacings. It appears that a spacing
half-way between the two patterns given on page 771 would give the flattest
response. Both the dB and voltage patterns are drawn on page 772 and

show almost equal ripple response over * 45°,

DOLPH TCHEBYSCHEFF LINEAR ARRAY

Using the Schelkunoff unit circle method we can notice a number of things.
Only zeros on the unit circle contribute to nulls in the pattern which means
we get the best results by keeping them there. It appears that no matter
where the zero are placed on the unit circle, the magnitude of the array
coefficients are symmetrical about the center line of the array. From
algebra we know that in order to have all elements of a broadside array in
phase, the zeros of the polynominal must occur in complex conjugate pairs.

As we move the zeros toward the negative real axis, the sidelobes are reduced.
Finually we have a binominal array which has all zeros at -1 and no sidelobes.
When we move the zeros toward the negative real axis, the main beam broadens.
The minimum beamwidth occurs when all the sidelobes are the same level. To
design an array, we could move the zeros around until all the sidelobes are
the same. For a small array we could get a solution after just a few tries,
but as the number of elements increased, we would take more and more time to
reach a solution. We need a generalized method of finding the zero positions
to give uniform sidelobes for a given sidelobe level and number of elements.

Dolph realized that the Tchebyscheff polynominals possess the property that

they have equal ripples between -1 and 1 and then rise rapidly outside this
region. Like most special functions, these are solutions to a differential
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equation.
2. .. -
Cd'T (x) - dT (%)
. 2,. m m 2 N
(1 - x7) ——%— ~X —Qf—— + m Tm(x) =0

dx

There are different solutions for each integer m and consist of polynominals
T.(x) =1 T.(x) = x T, (x) = 2x2 -1 T,(x) = 4X3 - 3x
0 1 2 3
These polynominals are related by a recursion formula:

Tm+1(x) = 2x Tm(x) - Tmfl(x)

For our purposes it is more wuseful to use the form

(-1)m Cosh(m Cosh-I{x/) x < -1
Tm(x) = Cos(m Cos-1 x) -1 x<1
Cosh(m Cosh--1 X) x>»1

The order of the Tchebyscheff polynominal is also the number of roots. Some
of the lower ordered polynominals are plotted on page 774. Outside of the
region -1=< x <1, the polynominal value rises rapidly. Dolph devised a
method of relating the Tchebyscheff polynominals to the array factor poly-
nominal for a broadside array. The equal ripple portion is related :to the
sidelobes while the exponential increase beyond x = 1 is related to the
main beam.

Consider a broadside array whose magnitudes are symmetrical about the center

axis.
I, I3 ) 5 I I I I3 Iy
o q O q O 3 O- q o T ° 43 ° 4 o3 o) 0odd
I4 13 12 I1 I1 12 13 I4
O d O d O d O d O d O d O d 0] Even

We can take the elements in pairs to get the array factor. If we use
/= k d Cos 8+ S

then for one pair the array factor is

In(ejn¢+ e“jnw) odd

In( ej (Zn - 1) ¢/2 + e.j (2n - 1) ¢/2) Even
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For odd number of elements, the total is given by 2N + 1 and for even 2N.
can combine the exponential functions into cosine and obtain the following
array factors.

We

N o1
n
1+2 > =2 cos2mf/2  odd
n=y 0
N In
2 I Cos (2n - 1) Y/2 Even
n=y 0

By using factors such as

Cos (2¢/2) =2 cos?(¥/2) - 1

Cos (4@/2) = 8 Cos" (#/2) - 8 Cos?(W/2) + 1

Cos (3 ¢/2) =4 Cos3( ¥/2) - 3 Cos(¥/2)

Cos (5 ¢/2) = 16 COSS(:///Z) - 20 Cos3( ¥/2) + 5 Cos(¥/2)

we can expand the above array factors as polynominals in the factor Cos({/2).
We will find it necessary to expand the polynominal in terms of a constant,
Xo’ times Cos(¢//2) in order to relate the array factor to a Tchebyscheff
polynominal and obtain the desired sidelobe level.

The peak of the beam occurs when ¢’= 0. If we make this correspond to a value
of X0 where the Tchebyscheff polynominal has a value R, then the sidelobes
will be equal ripple and at a level 1/R.

X
o}
R Beam
Peak
T7(X
+1 Sidelobes
N7 TN
-1 0 1
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If we make the substitution: X = X Cos( ¥//2), then we can use the Tcheby-
scheff polynominal with

Tm(Xo) =R

where 20 Log R is the desired sidelobe level for the array polynominal. The
zeros of the Tchebyscheff polynominal are given by

Xp + Cos((2p -1)T7/(2m))

Using the equation -j¥/2
Xp e

wqban find the angles of the zeros in the W plane which are symmetrical.

I

x_ cos(@/2) = x (3124 )
=+ 2 Cos"l(x /X))
P’ o

Once we have the zeros in the W plane, we can multiply out the roots form of
the polynominal to find the coefficients of the array.

X0 = Cosh((Cosh_IR)/m)

Example: Design a 10 element array with 25 dB sidelobes.

m=9 r = 10¢25/20) _ 17 7828 X = 1.0797
P Xp WP
1 .9848 £48.41°
2 .8660 £73.34°
3 .6428 £106.93°
4 .3420 £143.06°
5 0 180°

When we multiply out the root form of the polynominal and convert the voltage
magnitudes of the coefficients to dB, we getthe coefficients of the array.

NO. Coefficient NO. Coefficient
1 -15.46 dB 10 -15.46
2 -13.31 9 -13.31
3 -10.23 8 -10.23
4 -8.31 7 -8.31
5 -7.39 6 -7.39

Since the zeros are in complex conjugate pairs, the phase angles of the
elements are zero. The coefficients are symmetrical about the center of the
array because the zeros are all on the unit circle.

The Schelkunoff W plane diagram is drawn on page 777 for the example for Al2

spacings. A polar pattern is drawn on page 778 to more closely show the
sidelobe structure.
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OTHER TCHEBYSCHEFF TECHNIQUES

We can use the Tchebyscheff polynominals to arrive at other equal sidelobe
designs. When the spacing between elements is less than A/2, then the
preceding method will not give an optimum design. We will need to restrict
the designs to an odd number of elements. Start with an array factor for
an odd number of elements symmetrically fed about the center line. From
page 775 we have the following array factor

N - 1)/2
1+ 22 Cos n ¢

n=1

We will equate this to the Tchebyscheff polynominal by the transformation:
X = a Cos %’ + b

The visible reqion will range from X at the beam peak to X = -1 at the
pattern minimum. In this case for N elements we equate the polynominal of
the array to the (N - 1)/2 Tchebyscheff polynominal. Each root of the poly-
nominal is used twice: once on the positive portion of the unit circle and
once on the negative portion. These are in complex conjugate pairs so that
the unscanned array has equal phase feed. 1If we substitute in the two
restrictions, we can solve for the constants a and b. Beam peak occurs at

¢ = o.

X =a+b
o

The edges of the pattern occur at

W = -ka+ §
¥ = kd+ $
which we make correspond to X = -1. This depends on the value of &

Suppose & = 0 and Kk d<7 (less than A/2 spacings), then

-1 =acCosXkd + b
We can solve for a and b.

1+ Xo -(1 + XOCos Kd)
a=—-_———-—-——— b=

1 - Cos Kd 1 - Cos Kd

Suppose we want an array with 9 elements at a spacing of 0.375 with 25 dB
sidelobes.

N -1)/2 =4

We use a fourth order Tchebyscheff polynominal to find the roots.
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X_ = Cosh( cosh™ 1 (102°72% /4y = 1.4256

a = 1 + 1.4256 = 1.4209

1 —VCos(135°)

T
p o (1 +1.4256 Cos(135°) _ 4 n04s
1 - Cos(135°)

Using these coefficients and the transformation
X = a Cos ¢/ +b

we can relate the zeros of T4(x) to the zeros on the unit circle.

X -b
Y, =t Cos” (B—)

XP =+ Cos((2p - 1)77/2m)
X
p ¢b ﬂop
1 +0.9239 +49.69° +130.81°
2 +0.3827 +74.57° +105.82°

When we place these 8 zeros on the unit circle, we can find the pattern and
coefficients of the array. These are given on page 78l. If we have an even
number of elements, then we must place one of the zeros at -1 to maintain an
equal phase feed. This will not give us equal sidelobes if we use the
design for an odd number of elements and add the zero at -1 in the W plane.
The pattern of a 10 element array using this technique is shown on page 782
and we see that the sidelobes are not equal.

If kd is greater than 77, then the pattern will extend further than once
around the unit circle in the W plane and we use the following constants.

1+X X -1
- 9° o
2 2

For an odd number of elements, this technique will give the same zeros as
the former technique which is good for both odd and even number of elements

when the spacing between elements is greater than or equal to a half wave-
length.

kd > 77

Suppose & # 0, then the beam will be scanned. We must adjust the zeros in
the W plane to still give and equal sidelobe response. The visible region
varies over the range:

-kd+8& to kd+ &

We divide this into two cases. The first one does not include the point -1
of the W plane in the visible region. Then we have similiar equations for
a and b.
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1+ Xo f(l;f XOCds(kd.—‘S)

1 -Cos(kd-§) 1 -Cos(kd~-§)

Example: Design a 9 element array with 0.25 spacings scanned to 45°. As before
we require 25 dB sidelobes.

In order to scan to 45° the phase shift between elements, § , is - kd Cos Om

§

-63.64°

X, = 1.4256 with m =4
1+ 1.4256 -
3 = T - Cos(153.64%) ~ 1:2793
_ o
. (1 + 1.4256 Cos(153.64°) 0.1463

1 - Cos(153.64°)
a Cos ¢’ +b

We use the transformation: X

v, - tCos‘l((gp -b)/a) X = *Cos((2p - )77/ (2m))

% Yo Yo

.9239 +52.57° +146.77°
.3827 +79.35° *114.42°

These zeros are placed on the unit circle, and the pattern and coefficients

of the array are given on the top of page 784. The beam is scanned to 45°

and the sidelobes are 25 dB as specified. Four of the zeros are out of visible
space means that there is not an excessive amount of stored energy about the
array and that the efficiency will be good. Also the values of the feeding
coefficients are not critical to achieve the sidelobe level.

In the second case of a scanned array the point -1 in the W plane is included
in the visible region for a scanned beam. For this case we use the formulas
on page 780 for a and b.

1+ Xo X -1
as= —3 b= —%—
Example: Design a 9 element array with 0.375) spacings scanned to 45° with
25 dB sidelobes.

This is almost identical to the example above only the point -1 in the W
plane is included in the visible region.

Xo = 1.4256 a=1.2128 b = 0.2128

The phase shift between elements is given by: § =-kd Cos Gm = -95.46°
The zeros are found by using the transformation between W plane zeros and
the Tchebyscheff polynominal.
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3 ELEMENTS 0. 25 SPACINGS,

Array Zeros

*52.57°
+79.35°
*+114.42°
+146.77°

3 ELEMENT ARRAY 0. 375 SPACINGS., -35.46 DEG

—63. 64 DEG BETWEEN

Array Coefficients

1 -13.39 dB 0°

2 -14.17 -63.64°
3 -7.96 -127.28°
4 -8.92 169.08°
5 -5.93- 105.44°
6 -8.92 41.80°
7 -7.96 -21.84°
8 -14.17 -85.48°
9 -13.39 -149.12°

r
\_

Array Zeros

£54.10°
+81.95°
$119.41°
£159.59°

Fundamentals of Antenna Design

Array Coefficients

1 -15.23 dB 0°

2 -12.28 -95.46°
3 -9.13 169.08°
4 -7.36 73.62°
5 -6.79 -21.84°
6 -7.36 -117.30°
7 -9.13 147.24°
8 -12.28 51.78°
9

2By Thomas Milligan
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X
o P P
+0.9239 +69.17° +159.59°
+0.3827 +81.95° +119.40°

The W plane diagram and pattern are drawn on the bottom of page 784. The
beam is scanned to 45° and the sidelobes are 25 dB maximum. Because the
total array is longer, the beamwidth is smaller than the A/4 spaced array.
One more W plane zero is included in the visible region and shows as an
extra null in the pattern.

If we use this method for arrays scanned to endfire, then we obtain a design
with equal ripple, but it is not optimum. An optimum design is obtained by
letting the beam maximum correspond to - X . The phase shift between elements
is made greater than necessary for endfire.

—X0 = a Cos(k d + & )+ b
The pattern at ¢/= 0 is at a maximum of the ripple, X = 1.

a+b=1

The other end of the visible region corresponds to X = -1

-1 =acCos(tkd-§)+b
We can solve for the three unknowns:

X0 + 3 + 2 Cos(kd) J 2X0 + 2

2 Sinz(kd)

a=

b=1-a

§ = Sin_l((XO - 1)/(2 a Sin(kd)))

Example: Design a 9 element endfire array with 0.25\ spacings and 25 dB
sidelobes.

X0 = 1.4256 with m = 4

2.2128 b = -1.2128 & = 5.52°

a

The zeros in the W plane are found in the usual manner.

X
P

£ Cos((2p - DTT(m) ¥, = iCos_l((Xp - b)/a)

Q%f +15.07°, +43.86°, *67.97°, +82.50°

The array pattern is plotted on the top of page 786. On the bottom is the
pattern of an array designed by the former synthesis procedure. There is quite
an improvement in the directivity with this method. When we look at the
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. 9 ELEMENTS 0.25 SPACINGS 25 DB SIDELOBES ENDFIRE

/\f
\ )
F
Angles of Zeros Array Coefficients
+15.07° 1 -30.73 dB 0°
+43.86° - .2 ~-17.89 -174.48°
$67.97° 3 -10.40 11.04°
+82.50° 4 -6.31 -163.45°
5 ~-5.01 22.07°
6 ~-6.31 -152.41°
7 -10.40 33.11°
8 ~-17.89 -141.37°
9 -30.73 44.15°

SEREMTIATE T L0 e e e

9 ELEMENT ARRAY 0.25 SPACINGS ENDFIRE

Angles of Zeros Array Coefficients

$54,10° 1 -15.23 dB 0°

+81.95° 2 -12.28 -90°

$119.41° 3 -9.13 -180°

$159.59° 4 -7.36 90°
5 -6.79 0°
6 -7.36 -90°
7 -9.13 -180°
8 -12.28 90° - 786
9 -15.23 0°
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Chapter 16 Array Synthesis

phase angles between elements, we see that they are nearly 180°. In an array
this would mean that the input impedance would be quite low and the efficiency
quite low because of the high value of stored energy. The array on the
bottom has lower directivity, but the efficiency will be higher.

ZERO SAMPLING OF CONTINUOUS DISTRIBUTIONS

An array can be designed by sampling an aperture distribution such as a
Taylor line source. When the array is large, the sampling will accurately
represent the distribution. This method avoids the necessity of multiplying
out long polynominals which can have numerical difficulties. Usually double
precision must be used in the computer program to reduce the accumulated
round off and truncation errors. When the array is small, sampling will not
give the same response as the aperture. We can improve the match by sampling
the nulls of the aperture distribution pattern. If we consider the k d Cos 8
space pattern of an array as drawn on page 106 and 107, we can see that the
pattern of an array repeats at 277 intervals. The aperture distribution

k Cos © pattern has no repeat interval.

When the spacings between the elements of an array are A/2, then the visible
region in k d Cos © space spans 277 or the array repeat interval. This means
that we must equate an array with A/2 spacings to an aperture with the same
length regardless of the actual spacings between elements. The effective
length of an array sampling a distribution is one element longer than the
actual array because we consider each element to be centered on the sampling
interval of the array. The first and last elements then each extend a half
element spacing beyond the array. For uniform amplitudes the zeros of the
aperture will match the zeros of the array. The zeros of the uniform
distribution

Sin7mU

U

are modified for a Taylor distribution. The unmodified zeros of the uniform
distribution occur at integer values of U. A k space pattern in the variable

U has been drawn on page 788 for a Taylor line source with the first unmodified
zero at U = 4 and a sidelobe limit of 25 dB. For a uniform amplitude array

the zeros in the W plane are given by

_ eJZW’l/N

W

i =1, 2, ..., N-1

where i are integers. If the modified zeros of the Taylor are given by Ui’
then the zeros in the W plane are given by

Wi = eJZVUi/N

for N elements in the array.

Suppose we zero sample the Taylor distribution pattern drawn on page 788. The
zeros of the distribution pattern are

+1.3497, + 2.0457, +2.9851,

1+

4, 5

+48.59° +73.64° +107.46°  +144° 180° W Plane Zeros
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Chapter 16 Array Synthesis

These W plane zeros which are all on the unit circle were used to design a

10 element array with 0.75 wavelength spacings between elements. The pattern
is drawn on page 790. The sidelobes are maximum 25 dB as the uniform distri-
bution although the outer sidelobes do not fall off at the same rate as the
aperture distribution. We can also design the array by sampling the distri-
bution. On page 791 is a plot of the Taylor distribution with the indicated
sampling points. Another array was designed using these values and is

drawn on page 792. In this case the sidelobes are greater than 25 dB which
means that sampling the distribution will not give as good a pattern response
as sampling the zeros of the k space distribution of the aperture. Below

is a comparison of the two designs amplitudes.

Element Zero Sampled Distr. Sampled
1 -8.32 dB -8.17 dB
2 -5.83 ~-5.74
3 -2.91 -2.89
4 -0.90 -0.99
5 0 0
6 0 0
7 -0.90 -0.99
8 -2.91 -2.89
9 -5.83 -5.74

10 -8.32 -8.17

The differences between the designs are small but the zero sampled design
more closely follows the continuous distribution. This method also works
for any distribution such as variable sidelobe designs. In many of these
methods it is the zeros of the pattern which are manipulated and not the

distribution itself.

SHAPED BEAM METHODS

The previous methods seek to obtain the narrowest beamwidth for given sidelobes.
We will now discuss methods of obtaining shaped beams with arrays. The two
most used methods are Fourier series and Woodward-Lawson methods. Remember
that any linear array must be circularly symmetric about the axis. We found
the beamwidth of various linear apertures which can be related to linear
arrays of uniformly spaced elements. On page 787 we consider the first

and last elements to be extended a half element spacing beyond these elements
when sampling an aperture distribution. We will use this length when compar-
ing to aperture distributions. The effective length of an array is given

by Nd where d is the interelement spacing and N is the number of elements.
The physical length is (N - 1)d. We can use the results of Chapter 13 to

find beamwidths. The usual result is for an unscanned broadside beam. To
find the beamwidth of the scanned beam we can use the plot on page 555. If

we need an array for a shaped beam, then it must be larger than required for
the beamwidth to have degrees of freedom for the shaping. The beam cannot

be shaped when the whole array size is required to establish the beamwidth.
The array can more accurately shape the pattern when it is larger.

789
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Chapter 16 Array Synthesis

FOURIER SERIES METHOD

We discussed the Fourier transform method of apertures on page 530. The k
space pattern of an aperture is defined from - o0 to +o2. The array pattern
is periodic in k space which implies that Fourier series are used to expand

the pattern. The array pattern for a symmetrically fed array is given by
(pp. 775)

m
I
n
1+ 2 Z i Cos(2n¢//2)  o0dd
n=1

|
or 2 Z -IE Cos(2n -1) ¥//2 Even

n=1 °

where m = 2N + 1 (odd) or m = 2N (even) with ¢/ =k d Cos 8 + &§ . These
expressions show that the higher harmonics of the pattern are established
by the further out elements. We will not necessarily have symmetric array
coefficients. The array pattern is expressed as '

m
£(Y) = Z a_ J ¥ | 0dd
n=-m
m
f(l//) = X(an eJ(zn -DyY/2 + . e"J(zn -1 W/z) Even

n=1

Suppose fd(¢/) is the desired pattern in k space. We can expand this in a
Fourier series since the period is *+T in {/ space.

oo
£,04) = Z a ¥ 0dd
=-00
o
g W) = ) (o SV L, D2y g,
n=1

We can equate the coefficients of the two Fourier series.
first m coefficients of the expansion.

T
a = sz/ £,(¥) eIV ay 0dd

'~

The array is the

793
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, T

i Even
1" i(20-1) @ /2

. j n—
.ﬁ/fdw/) e ay

i

The array coefficients are found directly from the Fourier series coefficients.

|
]

a
-n

Example. Design a 21 element array with A /2 spacings with a constant beam
2b wide in { space.

b

_ 1 -jn ¢ _ Sin nb

4y = 27 J/ﬂ e d¢/ T Trn
-b

Suppose the constant beamwidth is 45° at broadside. 67.5°< @< 112.5°.

_ 360° A oy - °
b= A 5 Cos(67.5°) = 68.88
We can ignore the constant factor 1/ and expand the expression to find the
array coefficients.

a Amplitude Phase
0 1 0 dB 0°
+1 0.9328 -0.60 0°
+2 0.3361 -9.47 0°
*3 -0.1495 -16.50 180°
4 -0.2488 -12.08 180°
*5 -0.0537 -25.40 180°
+6 0.1336 -17.48 0°
+7 0.1209 -18.35 0°
*8 -0.0240 -32.40 180°
19 -0.1094 -19.22 180°
+10 -0.0518 -25.72 180°

The array response is plotted on page 795. A Fourier series expansion gives
an approximation which is least square for the given number of elements. As
the array is made longer and longer, it would more closely approximate the
desired pattern.

The example can be repeated with 20 elements. We use the integrals at the top
of the page to find the coefficients.

b
_ 1 -j(2n-1) ¥/ /2 _ 2 Sin((2n-1)b/2)
2 = 277/ e o (20-1)
-b

n

We get the same result for a__ - When we expand this, we get the following
coefficients:

794.
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n a,, Amplitude Phase
*1 1 0 dB 0°
*+2 0.5735 -4.83 0°
*3 0.0479 -26.38 0°
4 -0.2211 -13.11 180°
*5 -0.1506 -16.45 180°
*6 0.0520 -25.69 0°
+7 0.1359 ~-17.34 0°
+8 0.0468 -26.60 0°
+9 -0.0742 -22.59 180°
10 ~0.0848 -21.44 180°

The response of this array is plotted on page 797. The pattern has a null at
0° and 180° because the array is symmetrical about the center and spaced A/2.
This is a 20 element version of the two element even mode array discussed on
page 85 which also has nulls at 8 = 0° and 8 = 180°. There is an odd number
of half wavelengths between equal amplitude elements causing cancellation
along the axis. It appears that this array is better than the one with 21
elements, but in the main beam area they are nearly identical.

We can use this to design arrays with spacings greater than A/2, but we can
expect some problems because the Fourier series interval does not cover the
total visible region. Take the above example and design an array with 0.75
spacings. To get an array about the same length, we use 13 elements.

o
b 330 0.75)\ Cos(67.5°) = 103.32°

We use this constant with the expression for a broadside array to find the
coefficients.

n a Amplitude Phase

0 1 0 dB 0°

*1 0.9731 -0.24 0

2 -0.2243 -12.98 180°

*3 -0.2554 -11.85 180°

4 0.2004 -13.96 0°

*5 0.0794 -22.00 0°

*6 -0.1641 -15.70 180°

The pattern of this design is plotted on page 798. The procedure has failed
to produce a usable design. The main beam is identical to the one produced
by the half wavelength spaced array with 21 elements, but not enough of the
visible region is covered by the Fourier integral to suppress the lobes
beyond the main beam. If we design a series of arrays with spacings between
0.5A and 0.75A , we find that the array degrades smoothly from one to the
other. The Fourier series method can only be used with arrays only slightly
above 0.5A spacings with good results. It also works well for arrays with
spacings less than A/2. An array designed with 0.375 spacings (27 elements)
is down 30 dB along the axis which is better that the A/2 spaced array.

When more and more elements are used to sample the Sin X/ X aperture distri-
bution for uniform pattern over a region of 8, then more of the higher
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Chapter 16 Array Synthesis

harmonics of the distribution are included in the array and the better it
matches the aperture distribution.

Suppose we want to scan the beam to 60° using the same A/2 spacings, 21 elements,
and 45° beamwidth. The beam edges are 37.5° and 82.5°. We can find the
coefficients by directly integrating this requirement, but we can use the
phase shift between elements, § , to simplify the problem.
180° Cos(37.5°) + & 180° Cos(82.5°) + &
142.8° + § 23.49° + §

We can pick § to center the beam in ¢ space.

b = 142.8° + & -b = 23.49° + §
& = -83.15° b = 59.65°
We can use the formula Sin(nb)/(7n) to find the coefficients of the array.
n a Amplitude Phase
0 1 0 dB 0°
+1 0.8630 -1.28 ¥83.15°
+2 0.4360 -7.21 ¥166.30°
+3 0.0060 -44.39 +110.55°
4 -0.2134 -13.42 ¥152.60°
*5 -0.1761 -15.08 +124.25°
16 -0.0060 -44.39 +41.10°
+7 0.1206 -18.47 +137.95°
+8 0.1111 -19.08 +54.80°
+9 0.0060 -44.39 ¥28.35°
10 -0.0834 -21.57 +68.50°

This array is plotted on page 800 and we can sefthat the center of the beam is
scanned to 60°.

When we scan the beam to endfire, we must approach the problem differently
because we must account for the symmetry about 8 = 0°.. The spacing is limited
to less than A/2 since grating lobes are present at A\/2 (see page 85). There
is a region of | space which is not specified. We can chose the response in
this region in any convenient manner. The technique will be demonstrated
with an example. :

Example: Design a 21 element endfire array with a 90° beamwidth and 0.3 A
spacings.

Because the antenna is endfire, we will set § = - k d = -108°. 1If we con-
sider the polar diagram, this places the edge of the visible region at the
k space origin.
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0
k d Cos ©
108°
|
| -b
) Visible P . s
‘ Region

We are free to specify the invisible region. The easiest method is to specify
it as the mirror image, so that we have the same problem as above.

-108° k d Cos ©
—;80 l 180°

’ -b b
Integration
Visible Region —=* ‘ "InﬁiSible Region

Using these diagrams we can solve for b

o
b = 28 (0.34) cos(45°) - 108°
b = 31.63°

n a, Amplitude Phase

0 1 0 dB 0°
*1 0.5245 -5.60 108°
+2 0.4465 -7.00 +144°
3 0.3321 -9.57 +36°
4 0.2009 -13.94 72°
*5 0.0744 -22.57 180°
*6 -0.0284 -30.95 108°
7 -0.0945 -20.49 +144°
+8 ~-0.1196 -18.45 +36°
9 -0.1075 -19.37 72°
10 -0.0691 -23.22 180°

The pattern of this array is plotted on page 802. This array does not have
the definition that the plot on page 795. Without the beam shaping an array
of this size with uniform amplitude has a beamwidth of 44° which is found
from the graph on page 353. There is only a limited length of the array
which is available for shaping.

The only cases covered in this section have been constant amplitude beams.
The method also works equally as well for general shaped beams. If the
requirement in k space is curved without sharp corners, then the Fourier
series will match more closely the needed aperture distribution. The
Fourier series has smaller amplitude harmonics.
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Chapter 16 Array Synthesis

WOODWARD-LAWSON SAMPLING

This method is suitable for synthesizing aperture distributions as well as
arrays. The array feeding coefficients are found by sampling the aperture
distribution. The aperture distribution is found by sampling the desired
pattern in k space at even intervals. No integrals are required to find
the coefficients.

The technique is based on the scanned pattern of a uniform amplitude distri-
bution. It is convenient to place the nulls of the pattern at integers as
was done on page 543 for the Taylor line source.

Sin77m (U - Uo)

70 - U)

U_ is the maximum of the pattern in U space with the nulls occuring at integer
values of (U - Uo) with

U = a/) Cos @ U, = a/a Cos 9,

e 2

%
]

U space is k space divided by 77 . The boundaries of the visible region are
given by *a in U space. On page 804 are voltage patterns in U space of two
different uniform distributions with UO =1 and Uo = 2 for an aperture 10A
long. The nulls of both patterns occur at integer values of U. Notice that
the pattern peak of the dashed curve (U_ = 2) occurs at one of the nulls of
the solid curve (U_ = 1). If we only allow integer values of U_, then the U
space pattern at U_ is determined solely by the uniform distribution scanned
to Uo' Consider tfe pattern below U = 0 and above U = 3. The two curves are
on opposite sides of zero and tend to cancel when the distributions are added.
Each sample point in U space is a uniform distribution which has been scanned.
In general, we have 2a/A + 1 sample points which are independent at integer
values of Uo'

To synthesize a desired pattern we must first plot it in U space over the
visible region. The pattern is sampled at integer values of U. The
aperture distribution is the sum of the uniform distributions scanned to
the various angles. When a uniform distribution is scanned to Uo’ its
aperture distribution is given by

E = Eoem:’(Uo/a)z

The U space pattern is sampled only at integer values of Uo’ The amplitude
distribution for an aperture which is an integer number of wavelengths long
is given by

803
Fundamentals of Antenna Design by Thomas Milligan Copyright 1981



Chapter 16 Array Synthesis

o o
— o el ~| g s K o) N o o
o o o = S g o g = g
apnatfduy a2BeaTOoA
© 0
O O
e~
) — )
S
q ey
e e
. pe— \
e >}
o~ " ~
[ — O—
— ——————— ————————
e — —=
@ » I
) — [e]

o o
ol o
~ ~
3] / (3]

N [9\]
] ]
< <
] ]

©
[ ©
]
0 oo
1 I
apnatlduy =2feagop
[a\l| o
(o)) [eo) ~ O Ia] 1 o N . .
. . . . . o . o o (@)
o o o ol o o o o o i 1| ©
— " ~—
i 1
804

Fundamentals of Antenna Design by Thomas Milligan Copyright 1981



Chapter 16 Array Synthesis

Fundamentals of Antenna Design

E = E:, E. e-j(i/a)Z

i
i=-N

Ei are the samples at integer values of U and N = a/\ with N an integer.
Array coefficients can only be found easily by sampling the distribution.
The U space pattern cannot be sampled at its nulls because they are not
usually on the unit circle in the W plane. The Woodward-Lawson method can
produce patterns without nulls. See the top of page 766 for an example of
a pattern without nulls and its W space zeros distribution.

Design a 20 element array with A/2 spacings with a constant beam
between 8 = 60° and 9 = 90°.

Example.

The physical length of the array is 9.5 wavelengths but the effecti&e length
is 10\, see page 789. We first plot this distribution in U space.

U, = 10 Cos(60°) = 5 U, = 10 Cos(90°) = 0

1 2

‘Because the length of the aperture is 10\ , the limit of the visible region
is U space is *10.

U Space Pattern

-10 -5 0 5 10
When we sample this distribution, we get the following amplitudes.

i E,

- E; i E,
i i i
-10 0 -3 0 4 1
-9 0 -2 0 5 . 0.5
-8 0 -1 0 6 0
-7 0 0 0.5 7 0
-6 0 1 1 8 0
-5 0 2 1 9 0
-4 0 3 1 10 0

Since the value of the U space pattern at U = 0 and U = 5 can be taken as
either 0 or 1 at the discontinuity, we will use the average. A plot show-
ing the various U space patterns of the scanned uniform amplitude distri-
butions are given on the top of page 806. On the bottom is a plot of the
summation of these patterns which have been normalized to the peak and
converted to dB. The U space pattern is down by 6 dB at the beam edges.
The amplitude distribution is found from the formula:

0.5 + e_Jz/a + e 2z/a + e 3z/a + e“j bz/a + 0.5 e 3 >z/a
The amplitude and phase of this distribution are plotted on page 807. The

slope of the phase is negative to scan the beam off broadside.
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The array coefficients can be found by sampling the distribution. After
normalizing to the total power, we get the following coefficients.

n a Amplitude Phase
710 .0077 -42.31 dB  %67.5°
79 .0097 ' -40.28 +22.5°
58 .0167 -35.54 *+157.5°
¥7 .0597 -24.48 +112.5°
%6 .0832 -21.60 +67.5°
*5 L0472 -26.52 +22.5°
+4 .0658 -23.63 +157.5°
+3 .2351 -12.57 +112.5°
*2 .4056 -7.84 *67.4°
*1 .5125 -5.81 +22.5°

A polar pattern of this array is plotted on page 809.

Suppose we design an array with the same specifications as the example on
page 794 using 20 elements and A/2 spacings. The Fourier series design is
given on page 796 with the pattern on page 797. A constant beam is wanted
from 67.5° to 112.5°.

The effective array length is 10 wavelengths. The pattern limits in U space
are given by

U, = 10 Cos(67.5°) = 3.82 U

The array sampling at integer values of U gives the following coefficients
for the scanned uniform amplitude distributions.

9 = 10 Cos(112.5°) = -3.82

(=
=

i E, i E

i i i
-10 0 -3 1 4 0
-9 0 -2 1 5 0
-8 0 -1 1 6 0
-7 0 0 1 7 0
-6 0 1 1 8 0
-5 0 2 1 9 0
=4 0 3 1 10 0

Because the coefficients are symmetrical about i = 0, the phase of the aperture
distribution is either 0° or 180°. The distribution can be written as a sum

of cosine terms. When the aperture distribution is sampled, we get the
following array coefficients:

n Amplitude Phase n Amplitude Phase
*10 -22.82 dB 180 ) -17.96 180
*9 -43.32 0 xd -19.57 180
+8 -21.46 0 +3 -21.46 0
+7 -22.46 0 +2 -8.85 0
*6 -31.72 180 1 -4.99 0
808
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The pattern is plotted on page 8l1.. When comparied to the pattern on page 797,
we can see that there are fewer ripples in the pattern response for the
Woodward-Lawson design and they are slightly smaller. One problem is that

the beam is too narrow. This happens because the sampling was at discrete
points in U space. The pattern edges are at *3.82 but the sampled value

at *4 is zero. The method can only give the proper beamwidth for a constant
beam antenna when the beam edges occur at integer values in U space. The
point Uo = 3 corresponds to

0 = Cos 1(3/10) = 72.5°

Notice that the edge of the ripple occurs ar this angle. The method has
difficulty accurately producing an arbitrary beamwidth. It is better suited
to a more continuous U space pattern.

A good example of a continuous pattern distribution which can be designed
using the Woodward-Lawson sampling technique is a cosecant squared power
pattern. When used on the ground with the maximum toward the horizon, the
pattern falls off so that an aircraft flying at a constant altitude receives
a constant signal.

Design a 20 element array with 0.5 wavelength spacings and a cosecant squared
pattern from 6 = 20° to 6 = 85° with the maximum at 85°.

First convert the cosecant voltage pattern to a U space pattern. The pattern
coordinates are given below.
A Z

0
oL

The pattern is given by: E = Sin(o<m)/Sih(O() where &_ is the angle of the
maximum of the pattern. We can convert this to the normal angle O.

E = Cos(Qm)/Cos(O)
U = a/A Cos ©
E(U) = Um/U Um = 10 Cos(85°) = 0.8716

The U space pattern is the 1/X function which must be sampled at integer
values of U.

i E, i E, i E,

i i i
0 0 4 0.2179 8 0.1089
1 0.8716 5 0.1743 9 0.0968
2 0.4358 6 0.1453 10 0
3 0.2905 7 0.1245
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The U space pattern of this sampling is drawn on page 813 along with the
desired pattern. The ripple in the pattern is typical of a cosecant
synthesized pattern and are about the same size for an aperture twice as
long. The amplitude and phase of the aperture distribution are plotted

on page 814. The phase has a negative slope to scan the beam above broad-
side.

The array coefficients are found by sampling the aperture distribution.

n Amplitude Phase
¥l -6.47 dB +28.12°
¥2 -11.18 +68.28°
¥3 -13.47 +70.93°
¥4 -14.16 +96.56°
5 -16.47 +104.14°
+6 -15.90 +121.24°
+7 -17.90 *+135.40°
+8 -17.09 *144.92°
+9 -18.26 *+164.35°

+10 -17.91 +169.31°

The polar pattern of the array is drawn on page 815 along with a cosecant
squared pattern which peaks at 6 = 85°.

The Woodward=Lawson technique is able to design an aperture distribution
without integrating the k space pattern which is required by the Fourier
series method. Only a simple sampling is required to achieve a closed
form solution. The aperture distribution can be sampled to find the array
coefficients.
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