Chapter 2 Properties of Antennas

SPHERICAL COORDINATES

z
| b
o
e o
Y o\
4

s

X

The spherical coordinates are used extensively in antenna design. The
above diagram shows the spherical coordinates overlayed on the rectangular
(X, ¥, Z) coordinates. The first coordinate is the radial distance from
the origin, R. The surface R = constant is a sphere. The second
coordimate is the angle between the Z axis of the rectangular coordinates
and the radius to the point. This angle is designated & (theta). The
surface 6 = constant is a cone with its vertex at the origin. The third
coordinate is also an angle, Project the radius line on "to the X-Y plane,
The angle it makes with the x axis is the angle # (phi). The surface

¢ = constant is a plane which contains the Z axis.

The following is the set of relations between the rectangular and
spherical coordinates,

Lt 1 z = Z

R:= X"+ Y "+ 2 cos 6 tan ¢ -
VXPr viea? X

X =Rsmé cos Y= RPsw8smw & Z= Rcos b

Shown on the figure above are the directions of the unit vectors in the

R, & ,‘¢ directions. Each one of these unit vectors is in the direction
of increasing coordinate. Many times the fields of antennas are expressed
in terms of the theta and phi components.
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Chapter 2 Properties of Antennas

TRANSFORMATION BETWEEN VECTORS IN RECTANGULAR AND SPHERICAL COORDINATES

Given a vector in rectangular coordinates.
V=tea+ da + U,z
The radial component of the vector in spherical coorcinates is the

projection of the vector on to the unit radial vector.

r = &, o (Ur T + Uy Ty + U T,)

dr:‘ d)( z}—‘@v“l/yﬁk’ﬁ}z*é/{_a—r‘g,}

To reduce the above expression we need the vector dot products of the

unit vectors.
d,: ax = 5w 6 cos ¢ Ag+ Ay = co56 cos ¢ J?“a'x = —-5/~}£
d_‘_aay-‘—‘S/ues/ufé ﬁead-/r- cos B sm%{ aff" a/ = 505}6
Z{r‘aé: CO\SQ 5605‘2 = —-S/Mél a‘¢° z} = O
The & (theta) and # (phi) components of the vector are found in a similiar
manner.

(/{Qz %td‘é"a_x +(£Va—9°d‘}/ 7"[/%4_9"4-_&

Up =~ Uye Gg-Tx + Uy Ty Ty + U T+ Ty

If we expand the expressions above, we get the transformation from a vector
in rectangular coordinates to a vector in spherical coordinates.

h

a‘“ = é/XS/A/gCOﬁ% + @5//./9.5/.«/% i 6/% Cos &
Ug = Uy cos 6 co.s;z( + K/}/ cosd swg Uy sin 6

Ug = ~ U smd £ lﬁ/cos;ﬁ

The transformation from spherical coordinate vectors to rectangular coordinate
The result is given below.

vectors is found in the same way.

Uy = Uy 5m 6 co,sff + Ug cos O casd ~ U J/N;z{
Uy, = U, swé 5/4/;5 + Uo cosé swg » Ug cosé

a% = é(,. cos 4 — (/9 S/MYQ

In general to transform from a vector in one coordinate system to a vector
in another coordinate system, we need to find the projection (vector dot
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Chapter 2 Properties of Antennas

product) of the vector on to each of the unit vectors in the new
coordinate system, The operation requires the knowledge of the vector
dot products between all combinations of the unit vectors in the oid
coordinate system and the unit vectors in the new coordinate system.
The set of unit vectors in each coordinate system is called a bases.

We will have to know the differential lengths of the three vectors in
spherical coordinates. The product of these three differential lengths
gives the differential volume in spherical coordinates. The three
differential lengths are given:

dL1= dr Csz_‘-’Y*d@ dL3= r s 6 C/fg

The most used differential area in spheridal coordinate is the product
of the 6 and ¥ differential lengths. It is important to note that the
differential volume and differential areas are not constant, but depend
on the coordinates.

GENERALIZED CURVILINEAR COORDINATES

This is a good point to introduce generalized curvilinear coordinates.

We can define a coordinate system, in which, given a point, the location is
defined by three orthogonal (mutually perpendicular) sur faces at the
point., The three surfaces are designated:

U1 = constant U2 = constant U3 = constant

The three unit vectors are in the directions of increasing variables and

are the normal vectors defining a tangent plane of the three surfaces
defining the point.

The differential lengths are given:
dL1 = hlidU1 dL2 = h2 dU2 dL3 = h3 dU3

The differential volume is: h1 h2 h3 dU1 dU2 dU3

The divergence of a vector A is:

i (i) + 3 4) - 2, )

Note the cyclic ordering of 1, 2, 3 in the expression.
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Chapter 2 Properties of Antennas

The gradient of a scalar function V

vy =

oV

h, ou,

is:

The curl of a vector is given as:

The Laplacian of a scalar function V

v =

vyl =

hoh,

9.
ou

hy A,

o _
/ + V k3 + a(/
/7;5(‘(1 A}au
z. Z,
hahl l’ll hL
el 2
ou o)ug
ho Ao hy A,

is:

hihy

a5

+ £
QaB

(

h/q

)]

U

If two vectors are defined at the same point in the general curvilinear
coordinate system, then the following two expressions are true:

7 B

A-B =

A, Qs
A Ay
B, B

A/ B/ * ’4137- 7‘—’43'53

One of the problems that occurs in antenna theory is the vector dot

product of a radius vector to a far field point which is defined from
the origin and a source point not at the origin.
to take the vector dot product ih spherical coordinates is to express

the radius vector in terms of the unit vectors at the source point.

The only proper way

Most

of the time we just use the rectangular coordinates which do not change
directions of unit vectors for different points.

Common coordinates: 1 2 3
Rectangular Ui X Y Z
h; 1 1 1
i
Cylindrical U, R P Z
hi 1 R 1
Spherical U, R e %
hi 1 R R sin &
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Chapter 2 Properties of Antennas

POYNTING VECTOR

The electric and magnetic fields are perpendicular in an electromagnetic
wave, Both figlds are perpendicular to the direction of propagation.

If we take the vector cross product of the two fields, we will get a vector
in the direction of propagation.

Where E and H are the
peak-values of the phasors.

If we use RMS values, then

S =Ex H, The dimensions

of the Poyntiﬁg vector are
watts/ (meter)”, It is the
energy density of the electro-
magnetic wave.

The magnitude of the Poynting vector is the product of the magnitude of
the components in the plane wave,

/5/ = ji/fg////w/

We can express the magnetic field magnitude as a function of the electric
field in a plane wave in free space.

/A] = /75/ 7= 376,73

The Poynting vector can then be expressed in terms of the electric field
only,
—,2
=/ _ o+ IE/
/S| = 2 — E is the peak value.

/5) = /75/2 E is the RMS value,

SPHERICAL WAVES

We have only talked about plane waves. An actual antenna radiates spherical
waves, but at large distances the spherical waves can be approximated by
plane waves. We will use plane waves again because they simplify the
analysis. The problem with plane waves is that they require infinite
energy, not so with spherical waves. In spherical waves the propagation

is in the R direction. Since R 1is the direction of propagation,

the Poynting vector is in the 4§, direction. The energy density is
distributed around a sphere. Consider a sphere centered on the antenna

with radius R, Assume R 1is great enough so that the near by induction
fields (non propagating) have become insignificant (far field). At this
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Chapter 2 Properties of Antennas

point we can find the total power radiated by integrating the magnitude
of the Poynting vector over the syrface of the sphere. The differential
area on the sphere is given as R sin® d¢ do , which is dL, dL., of
spherical coordinates, If we sum the magnitude of the Poynting veéctor
times these differential areas over the surface of the sphere, we get

the total power radiated.
A 77

Pr=//5rzeﬁwed€d¢

The total power radiated is also the average value of the magnitude of the
Poynting vector times the area of the sphere.

7= S (47RY

Suppose we look at two concentric spheres centered on the antenna, then
the average Poynting vector magnitudes on the two spheres are related:

SpdTRE = S, 4TR

The ratio of the average Poynting vector magnitude is:

S R
S. D

The average Poynting vector magnitude is proportional to 1/ R2.

Let us consider a small area on the sphere. When the radius is doubled,
the surface area grows by four. The Poynting vector only has an &
component, The energy density function does not travel in the & or ¢

directions; therefore all the energy in the area A, is propagated to the
area A,. The sides of the figure above are calléd the bounds of a
flux tuge, the energy does not cross these boundarys. We will use the
concept of flux tubes when we discuss ray tracing. Each ray contains a
differential amount of energy which remains constant. Using the idea
of flux tubes, we can shrink the area to the differential area and see
that the Poynting vector magnitude at a radius R, 1is directly related
to the magnitude at R,. The relationship is the same as for the
average Poynting vector magnitude. The Pothing vector magnitude at a
particular & and 56 is proportional to 1/ R,

We saw above that the electric field magnitude is proportional to the
square root of the Poynting vector magnitude. This means that the
electric field magnitude is proportional to 1/R. Similiarly the
magnetic field of a radiating spherical wave is proportional to 1/R.
This is the reason the retarded potential used in the example of two
wire radiation was proportional to 1/R. The magnetic (and electric)
fields are directly proportional to the retarded potential of current.
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Chapter 2 Properties of Antennas

RADIATION INTENSITY

We saw that in a spherical wave, the magnitude of the Poynting vector
was bound in flux tubes which are radial lines, It is congenient to
define the radiation intensity which does not have the 1/R” dependence.

U= Sr R2 (watts/ Solid angle)

This is a function of 8 and ¢ : U(&, ¢). The antenna does not radiate
equally in all-directions which we call the pattern.

ANTENNA PATTERN

The pattern is a measure of the radiation intensity. To measure the
pattern we must measure the power density at a fixed distance from the
antenna. The power density is measured with a second antenna.,

hS . PROBE AwnTennyg

| e
Ve \3’1
|

! | Awrenmwa )

The probe antenna can either be carried around the antenna in a circle or
the antenna in the center can be rotated. The first method is used with
large antennas and the second with small antennas.

If we have a linearly polarized antenna, it has a spherical wave which has
the electric field in only one direction. In that case there are two
special patterns, The first is in the plane containing the electric
field. This is called the E plane cut, The other special pattern

is the H plane cut; it is in the plane containing the magnetic field.

We have named the patterns which cut through the constant surfaces of
the spherical coordinate: system angles. A pattern through a constant ¢
coordinate is called a great circle cut. A pattern through a constant

@ coordinate is called a conical cut (the surface of constant & is a
cone),
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Chapter 2 Properties of Antennas

INCREMENTAL DIPOLE PATTERN

Assume a small dipole is located in a uniform field parallel to the arms
of the dipole. 1

] T E (v/m)

The electric field will induce charges on the arms of the dipole, Since
the field varies as E_ sinwt, the induced charges vary as q(t) =

B Eo sinw t where B° is some constant. If we now connect the center
to a transmission line, the induced charges are drawn off on to the
transmission line, '

= 99 _
A E—I‘,co.sw('

Now. let us rotate the antenna relative to the field. The field may be

X :
\ Ecasd Esn6

divided into two components as is done in the figure above, The current
induced in the transmisiion line is now: I = Io cos wt cos € , The
power received is %R I” where R is the impedance of the transmission
line.

LS

2
RI*= RIo cos 8

L
2 P —
If we normalize the power received to the maximum, we have

U = Uy cos*E

Which is the pattern of the increment-dipole. On the following page
is a polar pattern of the incremental dipole. It is plotted using
the three types of pattern scales.

PATTERN SCALES

The polar pattern shows the three types of pattern scales. The outer
pattern which is the most used one, is the decibel scale. The paper
used is dB paper with the numbers of the scale in dB with the maximum
power at the edge of the paper. The values toward the center are
actually negative dB although they are given as positive numbers., It
has the advantage that it can show a large variation of the pattern
magnitude., The - 40 dB point corresponds to 1/10000 th the power.

The sidelobes show up on a dB scale, The dB scale must be referenced
to some power level, many times the maximum signal level. The second
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Chapter 2 Properties of Antennas

E PLANE PATTERN OF A DIPOLE ANTENNA
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Chapter 2 Properties of Antennas

pattern in is the square root pattern. The pattern should be plotted
on linear paper with 100 on the outside circle and O at the center, but
since the dB scale is the most used plot, it is plotted on top of it.
This is the square root of the radiation intensity which is proportional
to the electric field or magnetic field., The square root plot is some-
times referreéd to as the voltage plot. The third pattern scale is
proportional to the radiation intensity or the power pattern, It is
also called the linear pattern.

DIRECTIVITY

Directivity is a measure of the concentration of the radiation intensity
in the direction of the maximum radiation intensity.

Directivity = Maximum Radiation Intensity - Umax
y Average Radiation Intensity Uo

The average radiation intensity, Uo’ is the power radiated divided by the
total spherical solid angle, 477 , which is the area of the unit sphere.
The total power radiated is the surface integral of the power density.

m T

Average Radiation Intensity = ZIT—T- f f U(e) 4)) siNé d¢49
< (4

The directivity is related to the gain of the antenna, but it is easier
to measure or estimate from a few measurements. The gain equals the
directivity times the efficiency. The integral formula for directivity

is:
4 UMA)(

f”fZ(Q, 4)swo ddde

The term directive directivity has been defined for an arbitrary direction
as the radiation intensity divided by the average radiation intensity.

Directivity =

The directivity may be expressed in dB. The directivity is dimensionless
and is the ratio of two powers, so the directivity in dB is 10 times
the log to the base 10 of the ratio.

DIRECTIVITY ESTIMATES

The directivity may be found by measuring the radiation intensity
relative to some convenient reference level at equal angle increments

over the whole radiation sphere (16380 points for 2° increments). All
these values are integrated numerically to find the average radiation
intensity and the above formula is used with the maximum measured
radiation intensity. If the pattern is well behaved then the directivity
can be estimated from one or two patterns, The usual patterns are the
principle plane cuts which are the E plane and H plane patterns.
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BEAMWIDTH

When a pattern has a single main lobe, we can define a beamwidth for the
pattern. The most usual one is the half power beamwidth or the 3 dB
beamwidth, We also use the 10 dB or tenth power beamwidth when working
with parabolic reflector feed antennas. All the directivity estimates
require a distinct beamwidth usually centered at & = 0.

KRAUS.. METHOD

Given a pencil beam centered on & = 0, the directivity can be estimated
from the beamwidths of the E plane and H plane patterns

Directivity = 41253 (ratio)

Where GE, GH are the beamwidths in degrees.

From circuit theory we have the following estimate of the power in a pulse,

mn

Ve T

A coordinate system that is often used with pencil beam antennas is the
elevation-azimuth coordinate system, ¢x’ 7Sy.

¢x is the angle from the Y - Z plane
¢y is the angle from the X - Z plane

Consider the pattern plotted on 95}{.

7
40((¢k)67/¢x '-‘\"25/4/6)(/2 !

v
Similiarly /L( () dyﬁ/ = 25w 8y
=T
47
4 5 Gy Sm by

For small angles we can approximate the siné& by 8.

Then the directivity is given by: Directivity =

Directivity = AT Where the beamwidths are

‘9E 6H measured in radians.
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Converting from radians to degrees we have

4)253

Oc Gy
Note that this is a ratio. There are other similiar formulas in the
literature where other constants are used, but they are all about the
siame, The formula is better than it would appear from the number of
approximations made.

Dieecr w'/'y =

CONICAL BEAM METHOD

This is a method of estimating the directivity where the pattern is
approximated by an analytical function. The directivity of this
pattern function can be calculated exactly and used as an estimate
for the directivity. Consider a pattern given by the following
formula.

U = Cos2N(J§—9

This is a convenient pattern function which we will use many times for
theoretiecal pattern calculations. It is called the conical beam
approximation. On page 37 four polar patterns are plotted using this
function. The beam peak is at 8 = 0 and there is a null in the pattern
at © = 180°. The handy thing about this function is that the parameters
of the pattern can be easily calculated, The 3 dB beamwidth of the
conical beam pattern is:

!
Beamwidth = 4Cos-1((%>é”)
Given the 3 dB beamwidth, the constant N is found by:

N = Log (%)

2 Tog( Cos (HPBW/4)) HPBW - Half Power Beamwidth

The pattern can be integrated exactly. The directivity = N + 1, The
conical beam approximation can be used for antennas with different E and
H plane beamwidths if the following formula is used.

_ 2N, 6 2 2N, &8 . 2

U(e,#) = Cos e(—2 ) Cos (ys) + Cos h(—-—2 ) Sin (95)
This function can also be integrated and the directivity estimated. A
nomograph has been drawn for this function giving the directivity from
the E and H plane beamwidths and is given on pages 38 and 39. The
same nomograph has been drawn twice with different scales.
CONICAL BEAM DIPOLE PATTERN
Many antennas will have a null in the pattern at 90° in the E plane

mainly because the antenna is made from a combination of dipole elements,
In these cases the conical beam approximation does not provide this null,
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' CONICAL BEAM ANTENNA PATTERN
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Chapter 2 Properties of Antennas

A pattern approximation that includes the conical beam and the dipole
type pattern is given by:

U(g,$) = COSZNe(Zi) Cos 6 Coszys + Cos2Nh(-92—-) Sinzsé

This function approximates well the pattern of a log periodic dipole
antenna which has nulls at & = 90° in the E plane, The function can
be integrated and an estimate for the directivity can be found. There
is a nomograph on p. 41 using this approximation function to find the
directivity from the E and H planes beamwidths. It is very similiar
to the conical beam directivity chart.

For narrow beamwidths Kraus's formula gives the best results and for wide
beamwidths the conical beam method gives the best results.

BUTTERFLY PATTERNS.

There is a class of patterns for which the directivity estimates given
above will not work. These patterns have a null on the Z axis and
usually have rotational symmetry about the Z axis, A pattern with
rotational symmetry about the 2Z axis will have identical great circle
patterns for all & . Patterns like this are generated by Mode 2 log
periodic conical spirals, shaped reflectors, and some higher order
waveguide horns. A pattern. like this is sometimes called a butterfly
pattern. The figure on page 42 is an example of the polar plot of a
butterfly pattern (great circle cut). In general the pattern has main
lobes which are centered at some angle & (50 degrees in the figure).
The beamwidth is measured about the beam center. The pattern is
sometimes called a conical beam (confusing with the conical beam approx.)
because the beam peak is at a constant &.

A formula for the directivity similiar to the Kraus formula for pencil
beams can be gemerated. In this case all the power in the pattern can
be approximated by the width of the 3 dB beamwidth times the maximum
power., Suppose the 3 dB down points are at angles &, and €. 1f

we assume all the power is concentrated between these two angles and is of

unit magnitude, we can integrate to find the average radiation intensity,
62

U= 5 [smwode = <036, ~ <036

2
’
There is no'need to integrate over the ¢ component because there is

rotational symmetry. The maximum value: of the radiation intensity
is one; so we can find the directivity.

2
Cos 61 - 00392

Directivity (ratio)

A function similiar to the conical beam approximation can be used to
approximate the pattern. The following function can approximate the
butterfly pattern.

U=2B8B SinZM(——z ) COSZN(———? )

40
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Chapter 2 Properties of Antennas

Where B is a constant which normalizes the radiation intensity to
one. With a little bit of algebra the function can be solved for

M and N given the beamwidth and the beam center. This has been
done and the radiation intensity has been integrated for a continuum
of values. From these the directivity has been calculated and plotted
on page 44, The beam center is given on the abscissa, curves are
drawn for constant beamwidths, and the directivity in dB is on the
ordinate. The pattern on page 42 was drawn using this function.

DIPOLE PATTERNS

A dipole pattern is a special case of the butterfly pattern where the
beam center is located at & = 90°. A formula for the directivity of
this pattern was published by N. A, Mcdonald in IEEE Trans. AP March 78.
He approximated the radiation intensity by:

) - (sw(e:é))

Where }é is the angle from &
to the beamwidth.

The constant b can be related

159

HPBW
(Deg)

The average radiation intensity is found by integrating this radiation
intensity. U4

Average U =-a/‘5’(”;2ff Cosféd%

This integral has an exact solution in terms of sine integrals. The
directivity is the reciprocal of this integral. The directivity has been
calculated using this formula and is plotted on page 45. This pattern

is generated by a stack of dipoles on a tower for a broadcast antenna.

UNEQUAL BEAMWIDTHS

Many of these formulas for estimating the directivity from the principle
plane pattern cuts assume that the E and H plane beamwidths are equal.
When estimating the directivity we could use the mean value of the
beamwidth and the beam center for a butterfly pattern, but there is a
more reasonable method. Look on the directivity as an estimate of the
average radiation intensity.

4 1 Umax

Average Radiation Intensity = BE;ZZEE;IE;

The problem finding the directivity is calculating or estimating the
the integral of the radiation intensity. If we have a pattern with
unequal beamwidths, we can take each pattern and estimate the average

43
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Chapter 2 Properties of Antennas

radiation intensity by using the curves or nomographs to find the
directivity. We have two estimates of the average radiation intensity.
The average gives a good estimate and corresponds to using Simpson's
rule to numerically integrate over the ¢ variable.

! I(I />
_—=————+___
D Z\ D D,

Where Di is the directivity expressed in ratio.

D = v 2.D1D7.
D, + D,

GAIN

The gain of an antenna is another measure of the ability of an antenna
to concentrate the input power into radiation in a given direction.
The gain is defined as the required power flow into an isotropic
radiator to give the same radiation intensity divided by the power
flow into the antenna to give the radiation intensity. Gain is
understood to be at the maximum radiation intensity. The term
directive gain is defined like directive directivity; it is the gain
relative to an isotropic radiator in an arbitrary direction, The
power into an antenna is the sum of the radiated power and the losses
in the antenna including the reflected power at the input connector.
The ratio of the power radiated to the input power is called the
efficiency of the antenna, The radiated power can be found from
the surface integral of the radiation intensity.

T

P.o= \//2?(2% ¢9.snué36ﬂ9(175

The efficiency is given the symbol: /. . The input power is Fl,dhe
The power flow into an isotropic radiator to give the same radiation

intensity is 4 wal = Po
P Vo’
Cain = P_o 16 /

L [ ate 9w deds

This can be recognized as 7e(Directivity)

The gain is a measure of the increased power density of the radiation
over the level that would be present if the antenna radiated equally
in all directions (an isotropic radiator). When the gain is defined
this way, it is said to be the gain relative to an isotropic radiator.
The other common gain reference is the half wave dipole., We will see
later that the half wave dipole has a gain of 2.15 dB. The half
wave dipole is the reference for breadcast antennas and is used in
older texts and articles.

46
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Chapter 2 Properties of Antennas

EFFECTIVE AREA

The effective area is a measure of the energy captured from a passing
wave by an antenna and delivered to the receiver load on the terminals
of the antenna,

If an antenna is in a uniform field (plane wave), the effective physical
area captures the energy. This energy is divided up as follows; part

of the energy is dissipated in the material as I"R losses, the rest

of the energy is delivered to the input terminals of the antenna. If
the antenna is mismatched to the transmission line, then part of the
energy is reflected at the terminals. We will consider these reflections
when we discuss transmission line relations. The energy that passes

into the transmission line feeding the antenna is considered delivered

to the receiver.

What happens to the energy reflected by the transmission line feed?
It trgvels back through the antenna and part of it gets dissipated in
the IR material losses. The rest of it is radiated by the antenna.
This reradiated energy is distributed in the pattern of the antenna,
Since we have accounted for all the energy entering the antenna over
the physical area, this reradiated energy is all that is left. The
antenna will cast a shadow behind it whose ''darkness' depends on the
match of the antenna and the level of the radiation pattern of the
antenna in that direction,

PATH LOSS

We have considered the radiation of an antenna,which is the gain biased
radiation intensity, and we have considered the effective area of an
antenna, which is the receiving characteristic, Now it is time to
consider the two together, Suppose we have two antennas far away

from each other so that we are in the far field. If one of the antennas
is radiating we can find the power density at the receiving antenna.

_ Rg(ed)
Sr - 7_
4m R

The Poynting vector magnitude is equal to Ehe input power of the antenna,
P,, divided by the area of a sphere, 4777 R™ at a distance R (the distance
bétween the antennas), if it radiates isotropically, and times the gain
function in the direction between the two antennas. The power received
at the terminals of the second antenna will be the effective area of
the antenna times the energy density.

p-ss = RAIGY
47T R *

The ratio of the power received to the power transmitted at the terminals
of the antenna is the path loss between two antennas.

R a9 éb)
e 4mrRrR*
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If we consider antenna 2 to be radiating and antenna 1 the receiver,
then we will get a similiar formula for the path loss from antenna 2

to antenna 1.
Al gl(el d)

P
R 4 R
When we consider reciprocity, we will see that path loss between the
two antennas is the same regardless of which one is the transmitting
antenna. Combining the two equations above, the following relation-
ship is found.

gl, - ?7_

This is true for any antenna. The ratio of the effective area to
the gain equals a constant. If we consider the transmission

between two large apertures, the constant can be found, We will not
do that now, but the result is:

g . 47
A A
Now we have a relation between gain and effective area,
Aoy = 24
- T

The transmission between two antennas can be given in terms of the gain

of the two antennas.
2
Rec A )

- 99 (=

Rems 4R

The gain of a large aperture can be found approximately from the area,

- 47A
g p
This equation usually over estimates the gain because it assumes uniform

amplitude and phase over the antenna aperture. The transmission can
be expressed in terms of the effective areas as well,

Frec = A A
Preans ATR?®

The transmission path loss for two isotropic antennas is given on pages
49 and 50. To find the transmission between two antennas, we first
use the nomographs to find the transmission between two isotropic
antennas at the frequency and range. The gain of the two antennas
expressed in dB then must be substracted from this value to get

the path loss.

Instead of using the nomographs to find the path loss between two isotropic

antennas, we can use the following formula. The constants have been
evaluated.

Path Loss (dB) = 36,58 + 20 Log(R F)

48
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Chapter 2 Properties of Antennas

In the path loss formula R is measured in miles and F is
the frequency in MHz,

We need to consider the transmission between two apertures as the
frequency is changed. If we assume that the effective aperture area
remains constant such as in the case of a horn or parabolic dish
reflector, then for a constant range the transmission between the two
.antennas will increase with the square of frequency.

_p&_e‘_= /41141_\/ _ A/A'L/F L BF_L
Preans RrY A R™ ?) -

Where B 1is a constant and C is the velocity of light. We can under-

stand this if we consider the transmission between an isotropic source

and an aperture antenna, The isotropic antenna will radiate the same

energy density (Poynting vector magnitude) at the aperture antenna

regardless of the frequency of operation., The aperture antenna will

then capture the same total energy as the frequency is changed. An

isotropic source transmitting to an aperture antenna will have a flat

frequency response, When transmitting between two apertures, the gain

of the source antenna will increase with frequency which we can see from

the formula relating the gain to the effective aperture., The gain

of an aperture antenna increases as the square of the frequency.

Because the source antenna gain increases as the square of frequency,

the transmission between two apertures increases as the square of

the frequency. Gain is measured relative to an isotropic antenna.

—————

WHY USE AN ANTENNA? o S

We know that there are many times when we must use an antenna. These are
the times when to use anything else is impossible, for example, communications
with a missile, or over rugged mountain terrain. In these cases we cannot,

or would not, run a cable. But are there times when we would utilize an
antenna even over level ground? When we look at the large path losses of
antennas we begin to think it is always better to run a cable if possible,

Not so.

Example. Suppose we want to establish a link at 3 GHz over land. To

get the lowest loss we can use waveguide to carry the message. The
waveguide we would choose has only 31.7 dB/mile loss. An alternate link
would use two antennas each with a gain of 10 dB. The path loss for this
combination is 86 dB for a one mile link. It seems as though there is no
comparison. What happens with a 2 mile 1link?  The waveguide run would
have twice the loss of the one mile link or 63.4 dB. The two antennas
have a loss of 92 dB for the two mile link. The antenna link loses only
6 dB for a doubling of the link distance. For a 3 mile link the waveguide
run has a loss of 95.1 dB and the antenna pair link has a loss of 96 dB.
The waveguide run is losing fast. For any increase in the distance the
antenna system is far better than the very low loss waveguide. In a

6 mile link the waveguide run would have 190.2 dB of loss; the antenna
system only 102 dB. For the same loss as the 6 mile waveguide run, the
antennas can link about 160 K miles.
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Example. The second example of the advantages of antennas comes from

a problem at the antenna range. There is a 600 foot outside antenna
range. The receiver which is used to measure the patterns of the
antennas needs a sample of the signal to phase lock the signal and the
local oscillator at a 45 MHz difference. One of the proposed methods
was to run a cable through the conduit to the signal source which is

600 ft. down range and couple off some of the signal. The usual cable
thét is used around the range to carry signals is RG/U 115. The range
is to be used at 2 GHz, At 2 GHz the cable has a loss of about 11 dB/
100 ft; the loss of the run would be.66. dB. If a 10.dB coupler is used
at the signal source, then the power loss to the receiver would be 76 dB,
Since the source would transmit 100 mw (20 dBm), the signal at the
receiver would be -56 dBm which is enough to lock the receiver. None
of us wanted to pull 600 ft of cable through the conduit, Instead

of pulling the cable we decided to put up a standard gain horn on a small
stand out of the way of the measurement but still in the main beam of
the source antenna, The source antenna is a 10 ft, parabolic dish
antenna which we figure has at least a gain of 31 dB (assuming 30 percent
efficiency). From the nomograph of path loss we get an isotropic

path loss equal to 84 dB. The standard gain horn has a gain of about

15 dB. The total transmission loss between the source antenna and

the reference channel horn is 84 dB - 31 dB - 15 dB = 38 dB. Not

only do we not have to pull the cable, we must put a 20 dB pad on

the horn so that we do not saturate the receiver (-30 dBm). Even

when we have a short run it is sometimes better to transmit the power
using antennas instead of cables.

RECIPROCITY

Under certain conditions the transmission between two antennas is the
same regardless of which one is the transmitting antenna. Look at two
antennas,

N2
@ \b

The characteristics of the two antennas above and their interrelation-
ship can be described by an impedance matrix.

V, :&H 'zl?_ .I/
VL %11 _22,?. I’-

Reciprocity states: Any network constructed of linear isotropic
materials has a symmetrical impedance (or admittance) matrix,

2, T 2q
Isotropic means that the characteristics of the material do not depend
on direction. A linear material has properties which do not depend
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on the level of the fields applied on it, Suppose antenna 1 has a
source impedance of Z, and antenna 2 has a load impedance of Z,.
The response of the two port network of the two antennas and tﬁe
space between them is:

z
“TRANSMISS ION 4’?3(%') Re (%L> /'Z'Z(l
[to2 [Rut2) (Rt 2,) = 222w

Now if we interchange the transmitter and the receiver and make the
source impedance Zﬁ to match antenna 2 and the receiver load Z, to
e

match antenna 1, then we can find the transmission from antenna 2
to antenna 1. 2.

N0 Jf e

2
—TRANSM(SS{ON — 4?6(-2,) Ee(?l) /‘2‘,7,{
Zto | /(’Z‘u"‘ '21)<%u1" '37_) - 2128 ’L

Since Z,, = Z,, by the reciprocity theorem, the power tranfer between
the two antennas is identical no matter which one is used for the
transmitting antenna,

l k=

No mention of the far field has been made in this development. The
result is valid in the near field as well as the far field., The

second point is when the pattern of an antenna is measured with a probe
antenna on a circular path relative to the antenna, the measured pattern
is the same whether the antenna under test is transmitting or receiving.
When measuring a pattern, the measurement is the transmission between

the antennas for various angles. The receive and transmit patterns
are the same,
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