
SPHERICAL COORDINATES 

 

V 

 

The spherical coordinates are used extensively in antenna design. 	The 
above diagram shows the spherical coordinates overlayed on the rectangular 
(X, Y, Z) coordinates. 	The first coordinate is the radial distance from 
the origin, R. 	The surface R = constant is a sphere. The second 
coordinate is the angle between the Z axis of the rectangular coordinates 
and the radius to the point. This angle is designated 0 (theta). 	The 
surface 8 = constant is a cone with its vertex at the origin. The third  
coordinate is also an angle. 	Project the radius line on to the X-Y plane. 
The angle it makes with the x axis is the angle 0 (phi). The surface 

= constant is a plane which contains the Z axis. 

The following is the set of relations between the rectangular and 
spherical coordinates. 

= 	Y 1 11-  E ' 	COs 	- 

I x 2-  Y + zz 

= R .shv e cos 96 	= R shv 8 _57A/ 

 

R cos 6 

  

      

      

Shown on the figure above are the directions of the unit vectors in the 
R, a ,y6 directions. 	Each one of these unit vectors is in the direction 
of increasing coordinate. Many times the fields of antennas are expressed 
in terms of the theta and phi components. 

25 

Chapter 2 Properties of Antennas

Fundamentals of Antenna Design by Thomas Milligan Copyright 1980



TRANSFORMATION BETWEEN VECTORS IN RECTANGULAR AND SPHERICAL COORDINATES 

Given a vector in rectangular coordinates. 

= 	-7L- 	ay -67, 

The radial component of the vector in spherical coorcinates is the 
projection of the vector on to the unit radial vector. 

= afr o ( gra, 	eT), 	6-4) 

ar  = ax 	6?7,,_ 7,- ay ar ° Qy f ai_ e r ° 

To reduce the above expression we need the vector dot products of the 
unit vectors. 

 

Qe • 5K  Cos 6 cos  •A 

° 	cos® 

= - 	61 

 

Qr . ax = 5/n1 A COS 0 

5Ne s5/ki 

Zi r  • a, = CO35 

?:1-. i4 	—5/Af 

??-), = cos f6  

az_ = 0  

   

The e (theta) and 16  (phi) components of the vector are found in a similiar 
manner. 

6,'( = GfX 6? 0  Zfx .7,- ay  56 e-iy, f  (.4 a 6)  0 

G6(  a$6 A a 7L' 4:7 	ey 76. a., a,6 

If we expand the expressions above, we get the transformation from a vector 
in rectangular coordinates to a vector in spherical coordinates. 

(4 = („6, 	e Co, 	s,A_, B s,N 	,c az (as , 

qo  = ax  cos 6 co. s 	f ‘// cos E) 5/4.1 	- 	5, Af  

u9 	— e(A- 5/.4-1  fiS f Cy cos 5Z.  

The transformation from spherical coordinate vectors to rectangular coordinate 
vectors is found in the same way. 	The result is given below. 

= 	1/4,1 9 C 0.5 ig .7L 	co, e Cos 	— C(p  .5.N 

qy  = 	 7< 	a, cos G 	 cd cos 

= 	co-5 9 — 6(0 	e 

In general to transform from a vector in one coordinate system to a vector 
in another coordinate system, we need to find the projection (vector dot 
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product) of the vector on to each of the unit vectors in the new 
coordinate system. 	The operation requires the knowledge of the vector 
dot products between all combinations of the unit vectors in the old 
coordinate system and the unit vectors in the new coordinate system. 
The set of unit vectors in each coordinate system is called a bases. 

We will have to know the differential lengths of the three vectors in 
spherical coordinates. 	The product of these three differential lengths 
gives the differential volume in spherical coordinates. 	The three 
differential lengths are given: 

dL, = dr 	dL 2  = r cf L3 r spy A ci 

The most used differential area in spherical coordinate is the product 
of the e and 56 differential lengths. It is important to note that the 
differential volume and differential areas are not constant, but depend 
on the coordinates. 

GENERALIZED CURVILINEAR. COORDINATES 

This is a good point to introduce generalized curvilinear coordinates. 
We can define a coordinate system, in which, given a point, the location is 
defined by three orthogonal (mutually perpendicular) surfaces at the 
point. 	The three surfaces are designated: 

U1  = constant 
	U2  = constant 	U3  = constant 

The three unit vectors are in the directions of increasing variables and 
are the normal vectors defining a tangent plane of the three surfaces 
defining the point. 

a/ ) Qz ) a3 

The differential lengths are given: 

dL1  = h 1 
 dU1 	

dL
2 
= h

2 
dU

2 	
dL

3 
= h

3 
dU3 

The differential volume is: 	h1 h2 h3 
dU1 dU2 

dU
3 

The divergence of a vector A is: 

' 	4,) 	(hAAJ 	5t3  ( 1)1  A )) ti, h 3 	 ' 4̀ ' 	 3  

Note the cyclic ordering of 1, 2, 3 in the expression. 

— 
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The gradient of a scalar function V is: 

()V 	
Vi/ 	7?-1 	av 	a._ 

	

()(A, 	 (3(47_ 	43 344 3  3  

The curl of a vector is given as: 

 

x A = 

 

11,  AI 	ti t A, 

  

   

The Laplacian of a scalar function V is: 

v'V = va v V = av 	÷ 	
( 1,1 A 5 , ci/ ) 43 	au, 	

h, 	cc'1 2-/ 

,,) u3  
) v 
du 3  ) 

If two vectors are defined at the same point in the general curvilinear 
coordinate system, then the following two expressions are true: 

,Txff: = A, 	,4, 	A 3  

13, 2_ 	B3 

„T. g 	B, f 4 ,67_ 	B3 

One of the problems that occurs in antenna theory is the vector dot 
product of a radius vector to a far field point which is defined from 
the origin and a source point not at the origin. The only proper way 
to take the vector dot product if spherical coordinates is to express 
the radius vector in terms of the unit vectors at the source point. Most 
of the time we just use the rectangular coordinates which do not change 
directions of unit vectors for different points. 

Common coordinates: 	 1 	 2 	3 

Rectangular 	U 	X 	 Y 	Z 
h. 	1 	 1 	1 1 

Cylindrical 	U. 	R 	 56 	Z 
h. 	1 	 R 	1 1 

Spherical 	U. 	R 	 e 	0 
h. 	1 	 R 	R sin a 
1 
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POYNTING VECTOR 

The electric and magnetic fields are perpendicular in an electromagnetic 
wave. 	Both fields are perpendicular to the direction of propagation. 
If we take the vector cross product of the two fields, we will get a vector 
in the direction of propagation. 

Where E and H are the 
peak values of the phasors. 
If we use RMS values, then 
S = E x H. The dimensions 
of the Poyntig vector are 
watts/ (meter) . It is the 
energy density of the electro-
magnetic wave. 

The magnitude of the Poynting vector is the product of the magnitude of 
the components in the plane wave. 

/•T/ = /Elifte/ 

We can express the magnetic field magnitude as a function of the electric 
field in a plane wave in free space. 

//i/ 	 = 37(,73 

The Poynting vector can then be expressed in terms of the electric field 
only. 

E is the peak value. 

E is the RMS value. 

SPHERICAL WAVES 

We have only talked about plane waves. An actual antenna radiates spherical 
waves, but at large distances the spherical waves can be approximated by 
plane waves. 	We will use plane waves again because they simplify the 
analysis. The problem with plane waves is that they require infinite 
energy, not so with spherical waves. 	In spherical waves the propagation 
is in the R direction. 	Since R is the direction of propagation, 
the Poynting vector is in the q 4 . direction. 	The energy density is 
distributed around a sphere. Consider a sphere centered on the antenna 
with radius R. Assume R is great enough so that the near by induction 
fields (non propagating) have become insignificant (far field). 	At this 
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point we can find the total power radiated by integrating the magnitude 
of the Poynting vector over the surface of the sphere. 	The differential 
area on the sphere is given as R sine dsi. de , which is dL 2  dL3  of 
spherical coordinates. 	If we sum the magnitude of the Poynting vector 
times these differential areas over the surface of the sphere, we get 
the total power radiated. 

2Tr 77 

Pr = f f 5, fiv e9 d 96 
U 

The total power radiated is also the average value of the magnitude of the 
Poynting vector times the area of the sphere. 

Tj = 5r  AV (47 r ie)  

Suppose we look at two concentric spheres centered on the antenna, then 
the average Poynting vector magnitudes on the two spheres are related: 

.&,4(77A? 2  = Sz.  4177-ezl- 
AV 

The ratio of the average Poynting vector magnitude is: 

SZ 	47,L. 
The average Poynting vector magnitude is proportional to 1/ R 2

. 

Let us consider a small area on the sphere. When the radius is doubled, 
the surface area grows by four. The Poynting vector only has an Zf r 

 component. 	The energy density function does not travel in the B or 9!S 

directions; therefore all the energy in the area A l  is propagated to the 
area A9 . 	The sides of the figure above are called the bounds of 	a 
flux tube, the energy does not cross these boundarys. We will use the 
concept of flux tubes when we discuss ray tracing. 	Each ray contains a 
differential amount of energy which remains constant. Using the idea 
of flux tubes, we can shrink the area to the differential area and see 
that the Poynting vector magnitude at a radius Ri  is directly related 
to the magnitude at R2 . 	The relationship is the same as for the 
average Poynting vector magnitude. The Poy2ting vector magnitude at a 
particular E3 and 95 is proportional to 1/ R . 

We saw above that the electric field magnitude is proportional to the 
square root of the Poynting vector magnitude. This means that the 
electric field magnitude is proportional to 1/R. 	Similiarly the 
magnetic field of a radiating spherical wave is proportional to 1/R. 
This is the reason the retarded potential used in the example of two 
wire radiation was proportional to 1/R. 	The magnetic (and electric) 
fields are directly proportional to the retarded potential of current. 
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RADIATION INTENSITY 

We saw that in a spherical wave, the magnitude of the Poynting vector 
was bound in flux tubes which are radial lines. It is convenient to 
define the radiation intensity which does not have the 1/R dependence. 

U = Sr R
2 

(watts/ Solid angle) 

This is a function of e and 0 : U(0,y6). 	The antenna does not radiate 
equally in allAirettions.which'we call the pattern. 

ANTENNA PATTERN 

The pattern is a measure of the radiation intensity. To measure the 
pattern we must measure the power density at a fixed distance from the 
antenna. The power density is measured with a second antenna. 

Ick0 BE 4 mT ENNA 

The probe antenna can either be carried around the antenna in a circle or 
the antenna in the center can be rotated. The first method is used with 
large antennas and the second with small antennas. 

If we have a linearly polarized antenna, it has a spherical wave which has 
the electric field in only one direction. 	In that case there are two 
special patterns. 	The first is in the plane containing the electric 
field. 	This is called the E plane cut. 	The other special pattern 
is the H plane cut; it is in the plane containing the magnetic field. 

E PLANE 

H pL ANI 

H 

We have named 
the spherical 
coordinate is 
B coordinate 
cone). 

the patterns which cut through the constant surfaces of 
coordinate syfrem angles. A pattern through a constant 
called a great circle cut. 	A pattern through a constant 
is called a conical cut (the surface of constant 0 is a 
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INCREMENTAL DIPOLE PATTERN 

Assume a small dipole is located in a uniform field parallel to the arms 
of the dipole. 

/ 	t E (v/m) 

The electric field will induce charges on the arms of the dipole. 	Since 
the field varies as E sinu)t, the induced charges vary as q(t) = 
B E

o 
sincOt where B

0 
 is some constant. 	If we now connect the center 

to a transmission line, the induced charges are drawn off on to the 
transmission line. 

- 	 = Zo COS cot'
dt  

Now. let us rotate the antenna relative to the field. 	The field may be 

E s,I 6 

divided into two components as is done in the figure above. The current 
induced in the transmission line is now: I = I cos 0.-st cos& . 	The 
power received is 	I where R is the impedance of the transmission 
line. 

J.R1 Z  
COS 4- 44 

2 

If we normalize the power received to the maximum, we have 

a = cost A 

Which is the pattern of the increment(dipOle. On the following page 
is a polar pattern of the incremental dipole. It is plotted using 
the three types of pattern scales. 

PATTERN SCALES 

The polar pattern shows the three types of pattern scales. The outer 
pattern which is the most used one, is the decibel scale. The paper 
used is dB paper with the numbers of the scale in dB with the maximum 
power at the edge of the paper. The values toward the center are 
actually negative dB although they are given as positive numbers. It 
has the advantage that it can show a large variation of the pattern 
magnitude. The - 40 dB point corresponds to 1/10000 th the power. 
The sidelobes show up on a dB scale. The dB scale must be referenced 
to some power level, many times the maximum signal level. The second 
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pattern in is the square root pattern. 	The pattern should be plotted 
on linear paper with 100 on the outside circle and 0 at the center, but 
since the dB scale is the most used plot, it is plotted on top of it. 
This is the square root of the radiation intensity which is proportional 
to the electric field or magnetic field. The square root plot is some-
times referred to as the voltage plot. 	The third pattern scale is 
proportional to the radiation intensity or the power pattern. It is 
also called the linear pattern. 

DIRECTIVITY 

Directivity is a measure of the concentration of the radiation intensity 
in the direction of the maximum radiation intensity. 

Directivity = Average Radiation Intensity 	Uo 

The average radiation intensity, U, is the power radiated divided by the 
total spherical solid angle, 417 ,

o 
 which is the area of the unit sphere. 

The total power radiated is the surface integral of the power density. 
rr 

Average Radiation Intensity = 47r 	U (0)  (I)) -5 /4 4 Gil 44  f  
The directivity is related to the gain of the antenna, but it is easier 
to measure or estimate from a few measurements. The gain equals the 
directivity times the efficiency. 	The integral formula for directivity 
is: 

271 

f (0, ?) 5/A1 edide 
The term directive directivity has been defined for an arbitrary direction 
as the radiation intensity divided by the average radiation intensity. 

The directivity may be expressed in dB. The directivity is dimensionless 
and is the ratio of two powers, so the directivity in dB is 10 times 
the log to the base 10 of the ratio. 

DIRECTIVITY ESTIMATES 

The directivity may be found by measuring the radiation intensity 
relative to some convenient reference level at equal angle increments 
over the whole radiation sphere (16380 points for 2°  increments). All 
these values are integrated numerically to find the average radiation 
intensity and the above formula is used with the maximum measured 
radiation intensity. 	If the pattern is well behaved then the directivity 
can be estimated from one or two patterns. The usual patterns are the 
principle plane cuts which are the E plane and H plane patterns. 

Maximum Radiation Intensity _ max 

Directivity 
47r (.1 MAx  

34 

Chapter 2 Properties of Antennas

Fundamentals of Antenna Design by Thomas Milligan Copyright 1980



Directivity = 	47r Where the beamwidths are 
63 E 6 H 	measured in radians. 

BEAMWIDTH 

When a pattern has a single main lobe, we can define a beamwidth for the 
pattern. The most usual one is the half power beamwidth or the 3 dB 
beamwidth. We also use the 10 dB or tenth power beamwidth when working 
with parabolic reflector feed antennas. All the directivity estimates 
require a distinct beamwidth usually centered at 6 = O. 

KRAUS,.,  METHOD 

Given a pencil beam centered on 6 = 0, the directivity can be estimated 
from the beamwidths of the E plane and H plane patterns 

Directivity ,- -- 41253 	 (ratio) 
VE 

Where 40
E'H 

are the beamwidths in degrees. 

From circuit theory we have the following estimate of the power in a pulse. 
✓ 14)( 

lZ Vatity, 

t 
A coordinate system that is often used with pencil beam antennas is the 
elevation-azimuth coordinate system, 96 x, O y . 

95
x is the angle from the Y - Z plane 

16 	is the angle from the X - Z plane 

Consider the pattern plotted on Ox . 

/Jr  
ci(5/1k - 2 Smi (9x/2  

-zr 

71r 
Similiarly fu (54) c/9)/ 1- 2  S/x/ 6/4-  

— 77.  
477-  

Then the directivity is given by: Directivity 

  

4 s/. / ex/2  .5/Ai Ay/z. 

For small angles we can approximate the sin 6' by 0 . 

V 

c o, 

v69de N  Vmor 
-.0 
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Converting from radians to degrees we have 

4/ 2-613  
TheEcrivrty = 

BE OH 

Note that this is a ratio. 	There are other similiar formulas in the 
literature where other constants are used, but they are all about the 
same. The formula is better than it would appear from the number of 
approximations made. 

CONICAL BEAM METHOD 

This is a method of estimating the directivity where the pattern is 
approximated by an analytical function. 	The directivity of this 
pattern function can be calculated exactly and used as an estimate 
for the directivity. 	Consider a pattern given by the following 
formula. 

U = Cos (e ) 
This is a convenient pattern function which we will use many times for 
theoretical pattern calculations. 	It is called the conical beam 
approximation. On page 37 four polar patterns are plotted using this 
function. The beam peak is at O = 0 and there is a null in the pattern 
at 6= 180° . The handy thing about this function is that the parameters 
of the pattern can be easily calculated. The 3 dB beamwidth of the 
conical beam pattern is: 

Beamwidth = 4 Cos-1/ ( 2.) 
,4,v) 

Given the 3 dB beamwidth, the constant N is found by: 

Log (k)  N = 	 HPBW - Half Power Beamwidth 
2 Log( Cos(HPBW/4)) 

The pattern can be integrated exactly. 	The directivity = N + 1. 	The 
conical beam approximation can be used for antennas with different E and 
H plane beamwidths if the following formula is used. 

U(0,54 ) = Cos 2Ne(-1) Cos 2 (9) + Cos 2Nh(212L) Sin2 (9) 

This function can also be integrated and the directivity estimated. A 
nomograph has been drawn for this function giving the directivity from 
the E and H plane beamwidths and is given on pages 38 and 39. The 
same nomograph has been drawn twice with different scales. 

CONICAL BEAM DIPOLE PATTERN 

Many antennas will have a null in the pattern at 90 °  in the E plane 
mainly because the antenna is made from a combination of dipole elements. 
In these cases the conical beam approximation does not provide this null. 
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CONICAL BEAM ANTENNA PATTERN 

37 
'olar Chart. No. 127D 
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A pattern approximation that includes the conical beam and the dipole 
type pattern is given by: 

e U(6,0 ) = Cos
2N  e(---) Cos e Cos 2/  + Cos2N  h( e ---) Sin 7-) 

2 	 2 

This function approximates well the pattern of a log periodic dipole 
antenna which has nulls ate) = 90 in the E plane. The function can 
be integrated and an estimate for the directivity can be found. There 
is a nomograph on p. 41 using this approximation function to find the 
directivity from the E and H planes beamwidths. It is very similiar 
to the conical beam directivity chart. 

For narrow beamwidths Kraus's formula gives the best results and for wide 
beamwidths the conical beam method gives the best results. 

BUTTERFLY PATTERNS. 

There is a class of patterns for which the directivity estimates given 
above will not work. These patterns have a null on the Z axis and 
usually have rotational symmetry about the Z axis. A pattern with 
rotational symmetry about the Z axis will have identical great circle 
patterns for all 0 . 	Patterns like this are generated by Mode 2 log 
periodic conical spirals, shaped reflectors, and some higher order 
waveguide horns. 	A pattern ;like this is sometimes called a butterfly 
pattern. 	The figure on page 42 is an example of the polar plot of a 
butterfly pattern (great circle cut). 	In general the pattern has main 
lobes which are centered at some angle 9 (50 degrees in the figure). 
The beamwidth is measured about the beam center. The pattern is 
sometimes called a conical beam (confusing with the conical beam approx.) 
because the beam peak is at a constant 8. 

A formula for the directivity similiar to the Kraus formula for pencil 
beams can be generated. 	In this case all the power in the pattern can 
be approximated by the width of the 3 dB beamwidth times the maximum 
power. 	Suppose the 3 dB down points are at angles 0 1  and0 2 . 	If 
we assume all the power is concentrated between these two angles and is of 
unit magnitude, we can integrate to find the average radiation intensity. 

B2 
_ / 	 cos 0, -COS 4-a_ 

e/44t, 	 .57,VG 	= 
9, 	

2 

There is no need to integrate over the ./S component because there is 
rotational symmetry. The maximum value. of the radiation intensity 
is one; so we can find the directivity. 

Directivity = 2 (ratio) 
Cos 9 1 

 - Cos t9
2 

A function similiar to the conical beam approximation can be used to 
approximate the pattern. The following function can approximate the 
butterfly pattern. 

0 	 09 
U = B Sin

2M  ( ) Cos
2N  (-2-) 

2 

40 
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Where B is a constant which normalizes the radiation intensity to 
one. 	With a little bit of algebra the function can be solved for 
M and N given the beamwidth and the beam center. This has been 
done and the radiation intensity has been integrated for a continuum 
of values. From these the directivity has been calculated and plotted 
on page 44. 	The beam center is given on the abscissa, curves are 
drawn for constant beamwidths, and the directivity in dB is on the 
ordinate. The pattern on page 42 was drawn using this function. 

DIPOLE PATTERNS 

A dipole pattern is a special case of the butterfly pattern where the 
beam center is located at 	= 90° . A formula for the directivity of 
this pattern was published by N. A. Mcdonald in IEEE Trans. AP March 78. 
He approximated the radiation intensity by: 

wa49) .1" 
11 k) = s 

Where 	is the angle from 0= 90° . 	The constant b can be related 
to the beamwidth. 

b 
159 

 

HPBW (Deg) 

The average radiation intensity is found by integrating this radiation 
intensity. 

Average U= f  .5m/ L 6 0 cos 0  d  0 
This integral has an exact solution in terms of sine integrals. 	The 
directivity is the reciprocal of this integral. 	The directivity has been 
calculated using this formula and is plotted on page 45. 	This pattern 
is generated by a stack of dipoles on a tower for a broadcast antenna. 

UNEQUAL BEAMWIDTHS 

Many of these formulas for estimating the directivity from the principle 
plane pattern cuts assume that the E and H plane beamwidths are equal. 
When estimating the directivity we could use the mean value of the 
beamwidth and the beam center for a butterfly pattern, but there is a 
more reasonable method. 	Look on the directivity as an estimate of the 
average radiation intensity. 

4ir Umax 
Average Radiation Intensity = 

Direct 
Dir Directivity i v 

The problem finding the directivity is calculating or estimating the 
the integral of the radiation intensity. If we have a pattern with 
unequal beamwidths, we can take each pattern and estimate the average 
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radiation intensity by using the curves or nomographs to find the 
directivity. 	We have two estimates of the average radiation intensity. 
The average gives a good estimate and corresponds to using Simpson's 
rule to numerically integrate over the 0 variable. 

P 	z \ 121  

WhereILis the directivity expressed in ratio. 

2.D1 Dt.  

GAIN 

The gain of an antenna is another measure of the ability of an antenna 
to concentrate the input power into radiation in a given direction. 
The gain is defined as the required power flow into an isotropic 
radiator to give the same radiation intensity divided by the power 
flow into the antenna to give the radiation intensity. 	Gain is 
understood to be at the maximum radiation intensity. The term 
directive gain is defined like directive directivity; it is the gain 
relative to an isotropic radiator in an arbitrary direction. 	The 
power into an antenna is the sum of the radiated power and the losses 
in the antenna including the reflected power at the input connector. 
The ratio of the power radiated to the input power is called the 
efficiency of the antenna. The radiated power can be found from 
the surface integral of the radiation intensity. 

z7-  

pr- 	jeAS6)-5/^1416/61' c 
0 0 

The efficiency is given the symbol: ye  . 	The input power is P.-/47e  
The power flow into an isotropic radiator to give the same radiation 
intensity is 4 7rU i  = Po  

	

Po 	 ¢7T/
P 

Gain = 	— 

	

PI 	f 771ra (0, ft3) ‘5/Ai de-d0 
0 

This can be recognized as re  (Directivity) 

The gain is a measure of the increased power density of the radiation 
over the level that would be present if the antenna radiated equally 
in all directions (an isotropic radiator). 	When the gain is defined 
this way, it is said to be the gain relative to an isotropic radiator. 
The other common gain reference is the half wave dipole. We will see 
later that the half wave dipole has a gain of 2.15 dB. 	The half 
wave dipole is the reference for broadcast antennas and is used in 
older texts and articles. 
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EFFECTIVE AREA 

The effective area is a measure of the energy captured from a passing 
wave by an antenna and delivered to the receiver load on the terminals 
of the antenna. 

If an antenna is in a uniform field (plane wave), the effective physical 
area captures the energy. 	This energy is divideq up as follows; part 
of the energy is dissipated in the material as I R losses, the rest 
of the energy is delivered to the input terminals of the antenna. 	If 
the antenna is mismatched to the transmission line, then part of the 
energy is reflected at the terminals. We will consider these reflections 
when we discuss transmission line relations. 	The energy that passes 
into the transmission line feeding the antenna is considered delivered 
to the receiver. 

What happens to the energy reflected by the transmission line feed? 
It trvels back through the antenna and part of it gets dissipated in 
the I R material losses. 	The rest of it is radiated by the antenna. 
This reradiated energy is distributed in the pattern of the antenna. 
Since we have accounted for all the energy entering the antenna over 
the physical area, this reradiated energy is all that is left. 	The 
antenna will cast a shadow behind it whose "darkness" depends on the 
match of the antenna and the level of the radiation pattern of the 
antenna in that direction. 

PATH LOSS 

477-  

The Poynting vector magnitude is equal to he input power of the antenna, 
P
t , divided by the area of a sphere, 477 -  R at a distance R (the distance 

between the antennas), if it radiates isotropically, and times the gain 
function in the direction between the two antennas. The power received 
at the terminals of the second antenna will be the effective area of 
the antenna times the energy density. 

Pt-'4,3/(8) 99 

417g 

The ratio of the power received to the power transmitted At the terminals 
of the antenna is the path loss between two antennas. 

_ A2 9, (6 10 )  

r-e 	477 

We have considered the radiation of an antenna, which is the gain biased 
radiation intensity, and we have considered the effective area of an 
antenna) which is the receiving characteristic. 	Now it is time to 
consider the two together. 	Suppose we have two antennas far away 
from each other so that we are in the far field. 	If one of the antennas 
is radiating we can find the power density at the receiving antenna. 

Pt qi(e,  q5)sr  = 
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If we consider antenna 2 to be radiating and antenna 1 the receiver, 
then we will get a similiar formula for the path loss from antenna 2 
to antenna 1. 

_ A, 9Z X 99 

4-rr 

When we consider reciprocity, we will see that path loss between the 
two antennas is the same regardless of which one is the transmitting 
antenna. Combining the two equations above, the following relation-
ship is found. 

g/ 
= 

	

A, 	Il Z  

This is true for any antenna. 	The ratio of the effective area to 
the gain equals a constant. 	If we consider the transmission 
between two large apertures, the constant can be found. We will not 
do that now, but the result is: 

9 = 4 77—  

	

A 	,1 7-  
Now we have a relation between gain and effective area. 

2-  
/44( 47T 

The transmission between two antennas can be given in terms of the gain 
of the two antennas. 

Pizec. = 5,3z ( A  ) 

F-4,4m.5 	 47rR 

The gain of a large aperture can be found approximately from the area. 

z __ 47r  

This equation usually over estimates the gain because it assumes uniform 
amplitude and phase over the antenna aperture. The transmission can 
be expressed in terms of the effective areas as well. 

Pa EC 	 A, A, 

	

P7RA-A15 	
g z_ 

The transmission path loss for two isotropic antennas is given on pages 
49 and 50. 	To find the transmission between two antennas, we first 
use the nomographs to find the transmission between two isotropic 
antennas at the frequency and range. The gain of the two antennas 
expressed in dB then must be substracted from this value to get 
the path loss. 

Instead of using the nomographs to find the path loss between two isotropic 
antennas, we can use the following formula. The constants have been 
evaluated. 

Path Loss (dB) = 36.58 + 20 Log(R. F) 
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In the path loss formula R is measured in miles and F is 
the frequency in MBz. 

We need to consider the transmission between two apertures as the 
frequency is changed. 	If we assume that the effective aperture area 
remains constant such as in the case of a horn or parabolic dish 
reflector, then for a constant range the transmission between the two 
,antennas will increase with the square of frequency. 

Ple'E 	A A A, AL (F) L  = 
P‘" A t  — 	 c 

Where B is a constant and C is the velocity of light. We can under-
stand this if we consider the transmission between an isotropic source 
and an aperture antenna. The isotropic antenna will radiate the same 
energy density (Poynting vector magnitude) at the aperture antenna 
regardless of the frequency of operation. The aperture antenna will 
then capture the same total energy as the frequency is changed. An 
isotropic source transmitting to an aperture antenna will have a flat 
frequency response. When transmitting between two apertures the gain 

 of the source antenna will increase with frequency which we can see from 
the formula relating the gain to the effective aperture. The gain 
of an aperture antenna increases as the square of the frequency. 
Because the source antenna gain increases as the square of frequency, 
the transmission between two apertures increases as the square of 
the frequency. Gain is measured relative to an isotropic antenna. 

WHY USE AN ANTENNA? 

We know that there are many times when we must use an antenna. These are 
the times when to use anything else is impossible, for example, communications 
with a missile, or over rugged mountain terrain. In these cases we cannot, 
or would not, run a cable. But are there times when we would utilize an 
antenna even over level ground? When we look at the large path losses of 
antennas we begin to think it is always better to run a cable if possible. 
Not so. 

Example. Suppose we want to establish a link at 3 GHz over land. To 
get the lowest loss we can use waveguide to carry the message. The 
waveguide we would choose has only 31.7 dB/mile loss. An alternate link 
would use two antennas each with a gain of 10 dB. The path loss for this 
combination is 86 dB for a one mile link. It seems as though there is no 
comparison. What happens with a 2 mile link? The waveguide run would 
have twice the loss of the one mile link or 63.4 dB. The two antennas 
have a loss of 92 dB for the two mile link. The antenna link loses only 
6 dB for a doubling of the link distance. For a 3 mile link the waveguide 
run has a loss of 95.1 dB and the antenna pair link has a loss of 96 dB. 
The waveguide run is losing fast. For any increase in the distance the 
antenna system is far better than the very low loss waveguide. In a 
6 mile link the waveguide run would have 190.2 dB of loss; the antenna 
system only 102 dB. For the same loss as the 6 mile waveguide run, the 
antennas can link about 160 K miles. 
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Example. The second example of the advantages of antennas comes from 
a problem at the antenna range. There is a 600 foot outside antenna 
range. 	The receiver which is used to measure the patterns of the 
antennas needs a sample of the signal to phase lock the signal and the 
local oscillator at a 45 MHz difference. One of the proposed methods 
was to run a cable through the conduit to the signal source which is 
600 ft. down range and couple off some of the signal. 	The usual cable 
that islused around the range to carry signals is RG/U 115. 	The range 
is to be used at 2 GHz. At 2 GHz the cable has a loss of about 11 dB/ 
100 ft; the loss of the run would be 66_dB. If a 10 dB coupler is used 
at the signal source, then the power loss to the receiver would be 76 dB. 
Since the source would transmit 100 mw (20 dBm), the signal at the 
receiver would be -56 dBm which is enough to lock the receiver. None 
of us wanted to pull 600 ft of cable through the conduit. 	Instead 
of pulling the cable we decided to put up a standard gain horn on a small 
stand out of the way of the measurement but still in the main beam of 
the source antenna. The source antenna is a 10 ft. parabolic dish 
antenna which we figure has at least a gain of 31 dB (assuming 30 percent 
efficiency). From the nomograph of path loss we get an isotropic 
path loss equal to 84 dB. The standard gain horn has a gain of about 
15 dB. The total transmission loss between the source antenna and 
the reference channel horn is 84 dB - 31 dB - 15 dB = 38 dB. Not 
only do we not have to pull the cable, we must put a 20 dB pad on 
the horn so that we do not saturate the receiver (-30 dBm). 	Even 
when we have a short run it is sometimes better to transmit the power 
using antennas instead of cables. 

RECIPROCITY 

Under certain conditions the transmission between two antennas is the 
same regardless of which one is the transmitting antenna. Look at two 
antennas. 

t l  

The characteristics of the two antennas above and their interrelation-
ship can be described by an impedance matrix. 

V1 = 	41?._ 

, 	2 tz.  

Reciprocity states: Any network constructed of linear isotropic 
materials has a symmetrical impedance (or admittance) matrix. 

= 

Isotropic means that the characteristics of the material do not depend 
on direction. A linear material has properties which do not depend 

rtj 
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on the level of the fields applied on it. Suppose antenna 1 has a 
source impedance of Z 1  and antenna 2 has a load impedance of Z„) . 
The response of the two port network of the two antennas and the 
space between them is: 

__TaAmsmissioN 	k)e(,) Pc,  (-az.) -E-2.1 

I -to 2 	l(qti- 1) ( -am_ 	— 	I 2-  
Now if we interchange the transmitter and the receiver and make the 
source impedance Z9  to match antenna 2 and the receiver load Z I  to 
match antenna 1, then we can find the transmission from antenna 2 
to antenna 1. 

-rRaivsmissoni = 4Re(,) Re CO I 
	

-2_ 

2-6o 1 	1(4 1/ 4  t)(1.2_ 14 -EZ) 
Since Z12 = Z21 

by the reciprocity theorem, the power tranfer between 
the two antennas is identical no matter which one is used for the 
transmitting antenna. 

No mention of the far field has been made in this development. The 
result is valid in the near field as well as the far field. The 
second point is when the pattern of an antenna is measured with a probe 
antenna on a circular path relative to the antenna, the measured pattern 
is the same whether the antenna under test is transmitting or receiving. 
When measuring a pattern, the measurement is the transmission between 
the antennas for various angles. The receive and transmit patterns 
are the same. 
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