Chpater 3 Radiation Polarization

POLARIZATION

Polarization is the second consideration of the antenna response., Not
only must an antenna direct the energy density in certain desired
directions, but it must do so with the proper polarization. The
transmitting antenna and receiver antenna must be matched in polarizatiom.
If they are not, then the signal transmitted will be greatly reduced.

We will consider the two most used polarizations, linear and circular,

as special cases of the general elliptical polarization.

The polarization of a wave is defined as the direction of the electric
field vector. If we have a single electromagnetic wave as was considered
on pages 13 and 14, then we would say that the wave is linear polarized
and the polarization is aligned with the X axis, We only derived a
wave that was polarized with the electric field on the X axis. The
equation can also be solved for a wave that is polarized with the
electric field on the Y axis. We have assumed that the wave is
traveling in the Z direction. The spherical coordinate system could
be used just as well. In that case the two polarizations could be
aligned with the & and Qg unit vectors., We will use the rectangular
coordinate sytem and plane waves, but the results hold equally for
spherical waves. It will be easier to follow the development.

Remember in the far field that the electric and magnetic fields are
orthogonal (perpendicular) and that the magnetic field is related to

the electric field by the impedance of free space. All this means that
we can ignore the magnetic field and concentrate only on the electric
field. The electromagnetic wave travels in a direction orthogonal to
the fields which we will take to be the Z axis., In that case the
electric field can be expressed:

E=E a + E a
X X y vy

Both E_ and E_ are phasors which we can also express
b4 y ' ¢& 'g{
EJ(: /EXI GJ E/ = /E)//ej /
We will express the electric field:
E=-6(a+A%) A= S -pel
= = &y X +'r%- /. f%' €x f?.

A
fL is called the linear.polarization ratio.

9%

Let us normalize the equation and consider the equation of the tip
of the electric field vector. To do this we must add back the wT
term and take the real part.

X = cos(wt —/Gg) Y= pacos (T ~Agt f'—)
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We can expand the equation for Y by using the trigonometry identity
for the cosine of the sum of two angles.

)/:- IOL(COS(@%«E;,)COSXL - Sw(w't—ﬁ;)_sw 401_)

We can substitute X for Cos(wt - Bz) in the equation for Y.

/|/= /oL_ (ZCOS fl_ - smwlwt-. 2) SN SL

Now let us solve this equation for the Sin(wt - B8 z) term.

S/N(wf—/Bi’-) = X cos g:.A,,qS,_ - V/(IQ_S/N ,_)

We now make use of the trigonometry identity for the sum of the squares
of the sine and cosine,

Sinz(A) + COSZGA) = 1

Using the equation above for the sine term and the fact X = Cos(wt -sz)
we can formulate the following equation.

(xeot§ -0 )" ¢ x* =/

When we collect the terms in different powers of X and Y, the following
equation results.

z
N ~
Pi(rhcotf) — 2L oSt ¥ St smth) =
ﬁS/Uzgl_
This equation is in the general form: A X2 +BXY+C Y2 =1
which is the equation of an ellipse.

When looking at an electromagnetic wave from the Z axis of a wave travel-
ing in-the Z direction, the tip of the electric field vector will appear
to rotate in an ellipse. There are two special cases of the ellipse.
The first is when the ellipse collapses into a straight line; this is
called linear polarizationm, In this case the phase angle of the linear
polarization ratio will be 0° or 180°, Notice that the linear polariza-
tion ratio is like impedance because it is also the ratio of two phasors
and is trapped in the frequency domain, The second special case is
circular polarization, In this case the ellipse expands until it
becomes a circle, For circular polarization the phase of the linear
polarization ratio is either +90% or -90°, In general the polarization

ellipse will appear as below. [ v

Y
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T is called the tilt angle of the ellipse. If it was assumed that

the antenna was to be measured as a linear antenna, the co-polarization
direction would be aligned with the X' axis and the tilt angle would
be the angle of the linear polarization. Since the polarization is
not strictly linear but elliptical, the minimum linear response of the
antenna is called the cross polarization response, The cross polariza-
tion direction is aligned with the Y' axis. If we rotate the coordinate
system by the angle T , we will eliminate the XY term.

X=X"'"CosT -Y'SinT Y=%'"S8in7Z + X' CosT

If we substitute these into the equation for the ellipse, we can find the
tilt angle. We could do this which is the traditional way of handling
this and a great exercise in algebra and trigonometry, but it is easier
to come back to it with circular polarized waves. In the end we will
have an equation in the rotated coordinates.

At L ' =y

With T , the tilt angle determined by the requirement that the B'
term = 0 and A'=< C'. In the rotated coordinate system the polariza-
tion ellipse becomes:

Y/

For this diagram we define the axial ratio to be the maximum linear
response divided by the minimum linear response.

Axial Ratio = //\f/T _ _c__f - Max E
//‘/27 A Min E

The axial ratio is the ratio of two electric fields. The power in
a wave is proportional to the square of the electric field magnitude.
The axial ratio can be given in decibels,

?
Axial Ratio (dB) = 20 Log /<. = 10 Log <
Al Al

The axial ratio is usually associated with circularly polarized waves.
It may also be associated with linear polarization but cross polariza-
tion is the term used with linear antennas. The axial ratio is the
reciprocal of the cross polarization response.
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CIRCULAR POLARIZATION

. e . + I ( o‘)
When the phase of the linear polarization ratio, 5., equals -= (9
and the magnitude of the linear polarization ratio is one, then the
equation for the polarization ellipse becomes.

2 + Y% =1
This is the equation of a circle, the special case called

circular polarization. Let us go back and consider the parametric
equations of the polarization ellipse which is now a circle.

Y= cos(wt -Be + 1)
Y= 7 sw(wt - Bz)
A = cos(wt - Be)

If we position ourselves at Z = 0 and at time equalszero, the electric
field vector will be aligned with the X axis. We need to look at the
two cases separately,

Case 1. S,__= 72—7— In this case the equation for Y is given as;
vy = — s (wt -B=2)
The equation for X 1is: ¥ = cos (Wt - B%)

If we start at zero time and increase time by a small amount, the cosine
term, X, will change very little, The sine term will start from zero
and become negative., We can see this in the vector diagram below.

I

- = —— T T
=0

The tip of the vector has started to rotate clockwise as we look at the
wave coming toward us. Remember that the wave is propagating in the

Z axis direction, This circularly polarized wave is called left hand
circular polarization because if we curl the fingers of our left hand
in the direction of the rotation of the electric field our thumb points
in the direction of propagation.

Case 2, 8=—:’2.T In this case the equation for Y is given as:

V= sm (it - B2)

The equation for X is still: ¥ = coS (w? —B%)

If we start at time zero and increase time by a small amount, the cosine
term, X, will again change very little. Y, the sine term, will start
from zero and become positive. We draw the vector diagram below.

¢=0
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As you may have guessed, case 2 is right hand circular polarization.
For this case you use the right hand with the direction of
propagation in the direction of the thumb.

The two cases look like this when sitting on the Z axis and watching
the waves propagating in the Z direction,

RHC LHC

What is the rate of rotation of the electric field vector in a circularly
polarized wave? If we look at the parametric equations above, we will
see that the rotational rate is w t. That is, the vector rotates once
for every period (1/F) of the wave. At any instant of time the wave
will look like a corkscrew in space, and as the wave propagates, it
looks like the screw is rotating.

CIRCULAR POLARIZATION COMPONENTS

We can define a basis set of vectors for polarization using the two
circular polarizations. The normalized right and left hand circular
component unit vectors are defined in terms of the X and Y basis
unit vectors as:

—_— el / —_— (2=

> = L (Gx-,3y) = L (a+/a

Ae /E~(21x ./CQV ‘8 Jz (' x7TJ/ y)
We have used the equation for the linear polarization ratio as such:

‘5. J(2T

pe’/’= e Z)_
The term }4[2 comes from the normalization of the magnitude of the
vectors to one, We will show that this is a valid basis set for the

two dimensional space of polarizations, but first we have to look at
the scalar or dot product of two vectors with complex coefficients.,

*/

DOT OR SCALAR PRODUCT OF TWO VECTORS WITH COMPLEX COEFF ICIENTIS

If we are given two vectors with complex coefficients, such as phasor
vectors, then the scalar product is defined.

A*. B

A* is the complex conjugate of A,

Where
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Using the above definition for the vector dot product for vectors
with complex coefficients, we can take the dot product of the unit
vector of right circular polarization.

=X = _ = o _ _
e = 5 (ax 4y d/)"‘/_—:f (ax -:/'4)/)

= £ . . —_
= (7 "'(/)(/)) =/
Similiarly the dot product of the unit vectors of left hand circular
polarization is:

éz:F‘ éﬁ; = /

If we take the dot product of the two vectors &, and &2 , then we
will get the projection of the right hand circular polarization on to
the left hand circular polarization.

B ag= L (7, d) £ (A-,'%,)
=4/ # Q)G =0

Because the dot product of the two vectors is zero we say that the
vector §, is orthogonal to Qg and the pair form an orthogonal basis
set for antenna polarization. Using this basis we can express the
electric field:

E:EQ-Q—R"FELZ(\L é
R

Where E_ and are phasors which can be expressed E_ = jER{é?/ , etc.,
and Jp and &;_are unit vectors., We can also express the electric
field by:

E=FE(a +A4a)

A
Fe is called the circular polarization ratio.

Let us look at a predominately left hand circular polarized wave when

the time and space give a phase of zero. We can draw the polarization
as two circles as below. Each circle rotates with a rate of wt in
opposite directions with the center of the right hand circular polariza-
tion circle moving on the end of the vector of the left hand polarization.
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5c is the phase angle of the circular polarization ratio and is also
the phase difference between the right and left hand circular components.
The maximum signal occurs when the right and left hand circular
components are aligned. If we look at the diagram and consider time
moving backwards, then as time moves backwards the left hand component
will rotate CCW and the right component CW. The angle between the
two vectors will decrease at twice the rotation rate of either one of
them. When the vectors are lined up, the angle of the left hand
component will be -7 . T is the tilt angle. Therefore the
relation between the tilt angle and the phase of the circular polariza-

tion ratio is:
- &
7 = A_

RELATIONSHIP BEIWEEN X-Y BASES AND CIRCULAR BASES
We will find the relationship between the two sets of bases vectors

in two ways. In the first way be equate the two representations and
solve the simultaneous equations.

—_ A = E - - E . , -
a = R - = a
E, (ax + A ) —L(ax J“/> L= (Gx +4 /)
If we equate the ‘5; and the C@,components, we have two equations.

—

= L = ’J'

From these we can solve for the right and left hand components.
[ — . A~
2 E: - f:é-%-fi‘ V/JZ‘;%, £, = Er _'éi;

Solve for E_ by adding the two equations and solve for EL by 'substract-
ing the two equations.

REe=Jz & (1+,4) =28.= /26 ~;7)

—

- & A
Ee = =< (1 4+, s = & g
vz /) et =0-;r)
The circular polarization ratio is the ratio of the E

EL component, R
/Zg = _E;é = (/ 4’/23)

component to the
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The second method of finding the relationship between the X-Y bases
and the circular bases is to project the electric field on to the dg
and q vectors. This is done by using the scalar or dot product.

— oK A —
Ee = 42 - (6 (a, + A.3y)
= £ (@ ) (5 (@ + A 3Y)

E A
:Ff‘ (y i’J\f9L>
Similiarly for the EL component,
EL: a* E — E/ — L= —_ a —
“\f-;(@x /Gy ) - (&, + A.ay)
E = E; LA
©E R
AXTAL RATIO

The term axial ratio is usually associated with circular polarization.
Consider the axial ratio using the circular polarization vectors as the

bases for describing the electric field. The maximum electric field
will occur when the two rotating vectors are aligned along a radius
vector.

EMax - ER + EL

The minimum will occur when the two vectors are opposite along the
radius vector. If we assume that the wave is predominately right
hand cirular polarization, then the minimum is:

EMin - ER - EL
The axial ratio is the ratio of the maximum signal to the minimum signal
B IEIFIEL 1Al 4
Evin |ER| = |EL lecl — 1

Note this is the ratio of field magnitudes (voltage). We can express
the axial ratio in decibels,

Axial Ratio =

Axtac Rarro (a8l = 20 (_09 ER — L)

If an antenna is RHC, the LHC is called the cross polarization of the
antenna. The axial ratio is used as a measure of the cross polarization
of a circular antenna. An alignment scale on page 62 gives the relation-
ship between axial ratio and the circular cross polarization response.
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ANTENNA RESPONSE

Now that we have a foundation for the polarization of waves, we can
discuss the response of an antenna when the polarization of the wave
does not match the polarization of the antenna. If an antenna trans-
mits in the Z direction, the wave transmitted by the antenna is:

E,=E (3 + A, %)

The incident wave on an antenna is given by

This wave is in the coordinates of the source antenna. Since the
source coordinate system is rotated with respect td the receive
antenna, it will be necessary to rotate one of the antenna coordinate
systems. The receiving antenna coordinates are held constant and
the description of the incident wave is rotated about the X axis.

y
In Source In Receive Antenna
Coordinates Coordinates

N\

T
)
X

Incident Wave }/

When the in¢ident wave is expressed in the antenna coordinates, the
sign of the tilt angle changes. This implies that the sign of the
linear polarization ratio also changes. Changing the sign of a

phasor quantity is the same as taking the complex conjugate. Therefore
to express an incident wave in terms of the antenna coordinates we must

take the complex conjugate of the polarization expressed in the source
coordinates.

in antenna coordinates

£;3L:: EEL(QZX +-f{f 2§V)

The response of an antenna to an incident wave is the vector dot
product of the incident wave polarization with the polarization
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of the antenna. The voltage response of the antenna to the incident

wave is: . Ay
Y = %(H—ﬁ, Ar)

If we normalize the antenna response and the incident wave, then the
polarization loss can be found.
A —_—
* Ax M,‘v

> #
EL‘ = dx */"LZ a_)_ f}— \/__
V /f/pLL}a‘-I + L'lol—‘

The normalized antenna response becomes
*

EfE = It Al

' \/’7" L,ﬁT \/ /T'/OLl(al-z

The magnitude of the response is the square root of the product of
the response times the complex conjugate of the response.

A A* /\.k‘ A
JL(,+70LIIORL)<’+ fu, sz)
A N A A
\//—f—le{ok/ f/+ﬁ-zf1n._
To find the power response we square the voltage response.

| + (fk,ﬁz + ﬁ,ﬂi) +
(/+/EL,J")<)+/(%L))

We need to consider the middle terms of the power response.
A /‘% A A ‘(g -— )
A AL = AR 7 G
“\/‘(g,—gL)

'\

A AL

/*/& = lallfd e
S B¥ L XA — AR eJ‘(J"OF’“) -/ -§.)
]0']01 /0 /97, / /0 + C

The last expression can be reduced by using the following identity.
= A ~/
Ces A = z(e/ +€"/4)
Using this to reduce the equation, the power response can be written.
7_' = ﬁ""[ //OLL' +2/10L////OL7_/CO$(§,_5;)
2 2
(1 + e 1)+ /fu/)

This is sometimes called the polarization coefficient. It accounts
for the loss due to a mismatch of polarization between the incident
wave and the antenna.
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GENERAL ORTHOGONAL POLARIZATION BASES

Using the polarization coefficient we can define orthogonal polarizations
which have no transmission between them or [7 = 0,
Two polarizations are orthogonal if

. ,
1) ’fll, = /fizl

o
and 2) gl__g”-z i/SO
It is also true vectorially; if 5& and 5; are orthogonal then:
.—% —
Ayt Gn = O
Let us consider the response when the source and antenna transmitted

waves are expressed in terms of an arbitrary set of orthogonal basis vectors
for polarization (normalized so that X -4,= 1).

The Antenna E, = (d-m"' féa;/)

V! Pa P2 = Ao + 3 a >

Incident Wave A £ = ( mt

J1+ P Pj}‘

r =X = — A

e sesomse 152 ENE = (T 4 31af). (G + fr)

\//+7€‘70*‘* f/+JSW}é\w*
" — aﬁ‘@n‘ A*Q*‘o“ A Zx = roage —
E‘?“’EA = ]DW N 4‘4 7L /O4dm)dv 7‘ /OA-]OW d::Lo q’\l

o

From the orthogonality and the normalization we have:

S ‘*

dM a)\/ i O dU‘qM = O

-5 =
The response reduces to the following using these results:

A /\*
£, 5 =
A /\* A /\*

This has the same form as the response using X-Y basis vectors. The

same analysis which was used with that basis can be repeated for this
arbitrary orthonormal basis vectors. The polarization coefficient
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becomes:
7o LA A cos (G- 8T) b 14T pur
(A FOCie fu i)

This equation is the exact same form as the rectangular bases equation,

For any orthonormal representation we get the same polarization
coefficient form. for the general basis vectors.

If we use the circular polarization basis vectors, the polarization
coefficient has the same form as the polarization coefficient for
rectangular basis vectors except we substitute the circular polariza-
tion ratic for the rectangular polarization ratio. When we use

the circular polarizations for the basis the ratio of the two rotating
circles remains the same and only the phase angle changes as one of
the antennas is rotated. The magnitude of the circular polarization
ratio, f2 , remains constant under rotations of the antenna. The
magnitude and phase of the linear polarization ratio changes as the
antenna is rotated. The circular polarization bases is handy when
one of the antennas is rotated arbitrarily.

Circularly polarized antennas are used when we cannot hold constant
the angle between the transmit and receive antenna, such as on a
satellite spinning. If we rotate one of the circular polarized
antennas about the axis between the two antennas, the polarization
loss remains constant, although the transmitted phase varies. Since
neither the transmitting antenna or the receiving antenna has a
perfect axial ratio, we need to know the maximum polarization loss
possible between the two antennas. If we take the circular polariza-
tion coefficient and use 180° in the cosine term, we get the maximum
polarization loss. When we do this we get the curve on page 67 which
is the maximum polarization loss given the transmit and receive antenna
axial ratios.,
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