Chapter 4 Transmission Lines

TRANSMISSION LINES

We will cover transmission lines in the traditional development. Much
of antenna theory is given in the language of transmission lines and
transmission line relatiomns. The two wire transmission line will be
covered here and waveguides when we discuss horns. Only the TEM

mode will be considered.

A transmission line can be represented by a network which includes the
series resistance per unit length, the series inductance per unit
length, the shunt conductance per unit length, and the shunt capacitance
per unit length.

_IX o IO¢+4x)

Above is a circuit diagram for a differential length of transmission
line. We can find the differential voltage drop along the differ-
ential length

AV = Vtax) -V(X) = =T 2 sx

where é%-:»g?1‘ "ol and R and L are the series resistance and
inductance per unié length. The increment of shunt current associated
with a length 44X is

AT = - VYsx

The line current decreases with length because the current is shunted
off by the unit admittances. The admittance per unit length, Y, is
equal to the sum of the shunt conductance and capacitance per unit
length. As A ¥ —>0 in the limit the equations become:

qv — ar
_— = = -L —_— = -
ax z ax 44

Take the derivative of the first equation and substitute the second

equation for the derivative of the current and we get an equation only
in voltage.

dY .
TV =YY
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Chapter 4 Transmission Lines

Similiarly we can do the same with the equations in the reverse order
and get an equation in current.

4T
dx *

Both of these are linear second order differential equations whose
solutions are 917' and érKZ. The equation for the voltage is

V= Ve Py y

Ry T = )°r Y= /2y

If we take the derivative of this equation we can find the solution
for the current.

dv
A%

_ 7 — Ix
_L=—£—;(\/,e - e
We will consider only lossless lines. In that case R =0 and G = O,

A2V = ~w*lLC = &’L

Then J/)C =_/‘CUJZ—C—]/ =/' %{x | The velocity of the waves is U~

: -/
= —y/re %74(/1&/@/;(: -T2

If we add back the e»ﬂdtterm, then we have the following equation.

T o/ /\
In this case we can see the two propagating modes. These expressions
are similiar to the electromagnetic waves.

G,J'(wt -BX)

) (wC + BX
o’ BX)

propagates in the positive X direction
propagates in the negative X direction

o ‘wl . .
Of course, we will drop the e’ ““tern again and the equation for the
voltage is given in phasor notation.

V:VIQ*J}B’ZfVZ@JﬁX
d th t is: = W/ :
an e current is: o _ %—L (l/, e /X _ v, @,/,52{)

We can define the quantity ¥/Z as an admittance because it relates
the voltage to the current. The corresponding impedance is:

%Q:/_—:Z’.‘:__/:
v vV C

This is called the characteristic impedance of the transmission line.
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Each propagating wave has a voltage and current associated with it
whose ratio is equal to the characteristic impedance. To properly
complete the solution of the linear differential equation, we have
to apply the boundary conditions, i.e. the loads,

The waves move along the transmission lines at the velocity of light
in the medium. This means that there is a restriction on the product
of the inductance and capacitance per unit length.

/ [4
= Velocity oF Lioht =V,
Vi / Y -

To find the characteristic impedance of a transmission line, we usually
only have to find either the capacitance or inductance per unit length,
because the velocity of light is known on the structure, This is
handy because the capacitance per unit length of many structures can
be found in the literature of electrostatics. Take the two equations
that relate the inductance and capacitance per unit length to the
impedance and the velocity of light,

%=/_£; ?J: /
< Jec /

Solve the second equation for =
¢ Je Ve vV
and substitute the result into the first equation. /

Similiarly we can find the characteristic impedance from the inductance
per unit length.

= L =
r""ufz 2= UL

For an example let us consider a coax line. From electrostatics we
find that the capacitance per unit length of a coaxial capacitor is

2T €
e (l%) /2& ~ MaturAL Log

Where & is the permittivity of the material between the cylinders and
b is the outer radius and a is the inner radius. Because we only
use the ratio of b to a, they can also be the diameters of the
two cylinders. The velocity of light in the dielectric between the
cylinders is

Ue

Ve,

Where V. is the velocity of light in free space and /& is the square
root of the dielectric constant (or relative permittivity). The
characteristic impedance is found from the above relation.

2= 5= = =4 (%)

T vUc

Y, 2Ame
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From the discussion of plane waves we can recall that the velocity
of light in free space is given in terms of the permittivity and
permeability of free space.
/
Y = €= &€,

Veun,

Substituting in the above equation we have:

A YN IS /;%M

A7 E, €, 277 €y
Again for the discussion of plane waves we can recognize géas the
intrinsic impedance of free space 7 376.73. The 1mpedance of caox

is given as

- ¢4 (A Lo
= éfé— - = h ()

This is the most used type of transmission line for microwave antennas.

When considering a transmission line that has a nonuniform dielectric, we
cannot easily find the velocity of the wave. In this case we must find
the inductance per unit length as well as the capacitance per unit length.
For an example of this we will look at microstrip lines. A microstrip line
is a flat metal strip on a dielectric sheet with a ground plane on the
other side of the dielectric, see figure. For this line we can use

NANANANARN

the following trick. We can find the capacitance per unit length when
the dielectric is not present. For this case the characteristic
impedance can be found because we know the velocity; it is just free
space. Using this we can find the inductance per unit length.

L= %333 <;

Where Z00 is the impedance of the microstrip line without the dielectric
material. We can do this because the inductance per unit length is

not effected by the dielectric constant. When we find the capacitance
per unit length with the dielectric, we can find the characteristic
impedance and the velocity of the waves on the transmission line.

z -/ - -2/—:5

/ /
W= - =
vV£LC Zoor/ G C
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The impedance of microstrip is found by numerical techniques. By using
this method, the programmer only has to write a routine to find the
capacitance per unit length for any dielectric slab and call it once
with the dielectric constant and once with a dielectric constant of one.
The two capacitances can be used to find the characteristic impedance
and velocity of the waves on the transmission line.

TERMINATED TRANSMISSION LINE

When we solved the equations for the voltage and current ¢n the transmission
line, we obtained a solution which was two waves traveling in opposite
directions on the line. The ratio of these two waves can be found

from the boundary conditions imposed by terminations.

Suppose an antenna is connected to the end of a transmission line. Let
Z be the impedance of the antenna. If a wave is sent down the tr ans-
mission line towards the antenna, the ratio of the voltage across the
line to the current flowing towards the antenna is given by the
characteristic impedance of the line. When the wave reaches the
antenna, the ratio of the voltage across the antenna terminals

to the current flowing into the antenna is given by the input impedance
of the antenna. It appears that there is a contradiction here because
the transmission line demands that the ratio of the voltage to current
must be equal to the characteristic impedance and on the other hand the
antenna impedance also demands that the ratio of the voltage to current
be equal to it. The only way both these conditions can be met is for
a second wave to travel down the transmission line away from the
antenna. We say that this wave has been reflected off the antenna,

Let us consider the equations for the current and veltage on the trans-
mission line, It is convenient to measure distance from the antenna,
Traditionally S 1is used for this distance. The voltage on the
transmission line is expressed as:

. ~ = 27
|/::: M) (eJle‘S £+ FG_JBS) /g /]//

Remember that Ker£S is the wave traveling in the negative S
direction or towards the antenna. \ F:e‘JﬁS' is the reflected wave

. .. 0 . . .
traveling away from the antenna (positive S direction), is
called the voltage reflection coefficient. We will take the reference
direction for the current to be toward::the antenna. The current is

given by: ‘
I=Io(€‘//3$—f’€-‘//&y

A
o
- |
[fte 2,
i — ]
.65‘_'
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-/BS . .
The term p eJﬁ I  is negative because the current is flowing away from
the antenna, see figure. This also comes out of the differential
equation between the space derivative of the voltage and the current.

1f we take the ratio of the voltage on the transmission line to the
current on the transmission line, we will have the impedance looking
back at the antenna through the transmission line. Remember we took
the current toward the antenna as the reference which established
the direction we are looking down the transmission line. In the
OV V(e p ™)
Z(S)‘ - = s -
WA I;(c'//s ~jo @‘J/gs)

expression for impedance we recognize that VO/I0 = Z , the character-
istic impedance. If we also divide both the numerator and denominator
by evABS , we have:

-a,(i+(oe'~/'2'&)
(1 —p e/ %)

If we now look at the antenna terminal, S = 0, we have two expressions
for the impedance which must be equal.

2) = Ll+p) 24

2(s) =

We can use this to solve for the voltage reflection coefficient.
_ Za —%e
f 24+ 2o

The important thing to notice here is that the impedance varies as we
move along the transmission line away from the antenna. At any point
along the transmission line we can consider this to be the impedance
of the antenna and find the voltage reflection coefficient at this
point. From the equation of the impedance along the transmission
line we can identify a function of the reflection coefficient.

_ 2.0+ p(s)) Cs) = -/2BS
26) (1 -p(s) © [+ €
Notice that the reflection coefficient phase varies at twice the rate
as the traveling waves. The voltage reflection coefficient is the
same as S11 of the scattering matrix,

Let us look at some common voltage reflection coefficients. If the
antenna input impedance is the same as the transmission line character-
istic impedance, we say the antenna is matched to the transmission line.

- _Zo "‘?o
/0 £, +-2,

If we have an open circuit, then the impedance is infinite. Divide
the numerator and denominator of the expression for the voltage

= 0
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reflection coefficient by Z,.

A /0 = / — %‘/E‘A

/ + ‘?“/an

As ZA——>°'§0 in the limit ZO/ZA—’- 0 and p—>1,
Open circuit p=1 = 6"/0 magnitude 1, phase O,

For a short circuit the impedance equals zero and the voltage reflection
coefficient is

Short Circuit f>='i§3 =~/ magnitude 1, phase 180°.

=
VSWR

VSWR stands for the voltage standing wave ratio. Because there are two
waves traveling in opposite directions on the transmission line, there
will be points where the two voltages will add and points where the

two voltages substract. It will appear that these voltages are
stationary on the line even though they are the sum of two waves travel-
ing at the speed of light in opposite directions. The ratio of the
maximum voltage on the transmission line to the minimum voltage is VSWR.

The voltage along the tramsmission line is given as:
V= Vl1+ pe™/?r%)

The maximum voltage occurs when the phase of A(s) equals zero. The
minimum voltage occurs when the phase of /D(S) equals 180,

v
VSWR = —VMAX = ————f——i f’/
MIN el

Likewise we can solve for the magnitude of the reflection coefficient.

_ VUSWR - 1
’F/ VSWR + 1

The VSWR is measured traditionally by inserting a small probe in the
transmission line (a small antenna) with a detector connected to the
probe, This probe was moved along the transmission line and the
maximum and minimum voltages were recorded and the VSWR calculated from
the ratio.

RETURN LOSS
We can express the magnitude of the voltage reflection coéffient in dB
because it is the ratio of two voltages across the same impedance (the

characteristic impedance of the transmission line). The reflection
coefficient magnitude is always less than or equal to one which means
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the logarithm of the reflection coefficient magnitude will always be
negative. To save ourselves from always having to write negative
numbers we define the return loss

Return Loss = -20 Log[(#

The return loss is so named because it is the ratio of the power reflected
off the antenna to the power incident on the antenna.

The power ratio transmitted into the antenna is: %»1;

The power in the reflected wave 1is V I%* using RMS values of current
and voltage.

V1% = Vof(s) I f:*(s) = v on{of‘

The power traveling toward the antenna is Vo Io' By the conservation
of energy the power delivered to the antenna must be. the:difference, .

",,, T, 2
(1-le)y v, 1

An alignment chart is given on page 76 of return loss versus VSWR and
réturn loss versus transmission loss.

SMITH CHART

No study of transmission lines is complete without a discussion of the
Smith chart. = The voltage reflection coefficient is the ratio of two
phasors which are the incident wave voltage and the reflected wave
voltage. It can be represented as a magnitude and angle (phase) just
like any other complex number. We can plot the reflection coefficient
in polar coordinates; the maximum value is one for a passive component.
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We can identify some of the common reflection coefficients.

+J
P
/*‘”Mﬂp
i"/r .

Matched Load

///,Open Circuit

\ /
Short Circuit
Voltage Reflection
Coefficient

\M‘L‘w /

- i
e o o

_J'

Now that we identified a polar representation for the voltage reflection
coefficient; P, H, Smith in 1939 overlayed on this a graph of the normalized

impedance values with curves of constant resistance and reactance. The
normalized impedance can be found from the voltage reflection coefficient.
_ Za(I-I—F)
Z- —_—1
I-p

The constant resistance curves are circles whose center lie on the zero
angle line ( real axis) and one point is at the open circuit point
(reactance infinite). The normalized resistance of one passes through

Constant Resistance
Curves

Voltage Reflection
Coefficient

the center of the outer one circle. Higher resistances are to the right
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of the origin (towards an open circuit) and smaller resistance circles
cross the 180° angle radius to the left of the origin (towards a short
circuit).

The curves of constant reactance are also circles. These are centered
on a line tangent to the one circle at the open circuit point. The X-axis

e S
e i,

.5j e

Center of Circles

Constant Reactance
Curves

Voltage Reflection
Coefficient

-.5]j

-]

line corresponds to the zero reactance curve. Above the X-axis the
reactance is positive or inductive; below it is capacitive (negative).
The outer circle is zero resistance and corresponds to pure reactance.

When we combine the two sets of curves we have the full Smith chart given
on page 79. Given the input impedance of an antenna we can locate the
point on the Smith chart from this impedance normalized to the input
transmission line. We can find the magnitude of the reflection coefficient
as the distance from the center and the angle from the X axis. The

angle 6f the reflection coefficient is scaled on the inner most circular
scale. The magnitude of the reflection coefficient is found using the

top most scale on the right side of the scale below the chart.

The VSWR can be found by drawing a cirle from the reflection coefficient
point using the center of the chart as the center of the circle until it
crosses the positive X-axis, The value on the X axis is the VSWR,
The VSWR can also be found by using the scales at the bottom; it is
given both in ratio and dB. The bottom scales also include the return
loss and the transmission loss. ‘
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Chapter 4 Transmission Lines

The Smith chart can be used to calculate the impedance along the transmission
line. Remember that the distance S is measured away from the antenna
and that the angle of the reflection coefficient decreases as the distance
increases. Moving away from the antenna means decreasing angle or clock-
wise rotation on the Smith chart. The second point is that the reflection
coefficient phase decreases at twice the rate as the two waves on the
transmission line. One revolution of the chart corresponds to a half
wavelength along the transmission line. The outer most circular scale

is given in wavelengths. The magnitude of the reflection coefficient
remains the same on a lossless transmission line. This corresponds to

a circle centered on the origin of the Smith chart. To move an impedance
down a transmission line, we find the normalized impedance on the chart,
draw a cirle through this point, draw a line to the outer scale. This
locates the point using the scales. Next we use the outer scale to

move down the transmission line in wavelengths. Using the outer scale

we draw a radial line through the point on the scale. Where the radial
line passes through the constant reflection coefficient circle, we can
read the input impedance at that point on the transmission line from the
Smith chart.

For an example let us take an antenna with an input impedance of 73 + j42
and find the input impedance at the input of a transmission line .381
wavelengths long whose characteristic impedance is 86.5 ohms. First we
must normalize the impedance of the antenna to the transmission line.
Divide both the real and imaginary parts of the impedance by the
characteristic impedance of the transmission line. The normalized
impedance is 0.84 + j0.49. Plot this point on the Smith Chart.

Normalized
Impedance

Draw a radial line out beyond the chart to the circular scale of wavelengths.
Since we are moving away from the load, we rotate CW around the chart on a
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constant reflection coefficient circle. After rotating clockwise on the

Constant
Reflection
Coefficient
Circle

Normalized
Impedance at
Input to Trans-
mission Line

%MMMM 0. 381 )\

wavelength scale 0.381 wavelengths, draw a radial line from the wavelengths
scale to the center of the chart. On the chart draw a circle of constant
reflection coefficient through the normalized impedance. Where the radial
1ine from the center of the chart to the wavelength scale and the circle

of constant reflection coefficient intersect is the normalized impedance

of the antenna looking into a section of tramnsmission line. We read the
normalized impedance to be 0.58 ohms. To unnormalize this impedance we
multiply it by the characterististic impedance of the transmission line,
86.5 ohms. When we do this the result is 50.2 ohms. If at this point
we would connect a 50 ohm transmission line, then the antenna would be
matched to this trammission line,

This example of matching an antenna was taken from the input impedance

of a half-wave dipole antenna. In practice this would be a poor design
because the reactive part of the impedance of the antenna could be reduced
by shortening the antenna. When this is done the real part is also
reduced. The second problem is using a long section of trammission line
to match the antenna. The @lectrical length of this line will change
with frequency and the antenna will no longer be matched. Matching
sections should be as short as possible to get the maximum bandwidth.

The Smith chart may be used with admittance as well as impedance, In this
case we must add 180° to the angles of the reflection coefficient on the
chart. After we have done this we can use the chart the same as before
only we must use admittances instead of impedances. This is handy when
we use shunt stubs to match the antenna.
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We can identify some of the key points on the Smith chart when using
it with admittances.

. Matched Load
Capactive

Reactance

Open
Circuit

) / Short Circuit

Inductive
Reactance

Smith Chart using Admittance Coordinates

Since to change from impedance to admittance we need only add 180° to the
phase angle of the reflection coefficient on the Smith chart, we can use
the chart to change impedances to admittances and vice versa. In fact
when we are matching an antenna we can switch back on the chart depending
on whether a shunt or series reactance is to be added to the admittance or

impedance respectively. We need to keep track of whether we have impedance
or admittance during the process.

Normalized Impedance

Circle of Constant
Reflection
Coefficient

Normalized Admittance
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