Chapter 5 Antenna Arrays

ARRAYS

We will study arrays before considering individual antennas because an
antenna can be analyzed as an array of point sources. It is a good
topic to get a feel for the addition of the radiation from individual
parts of an antenna.: _In-fact we can roughly predict the patterns of
some antennas by breaking up the antenna. into small pieces and considering
it as an array. We will start by considering only isotropic radiators.
Later we will apply pattern multiplication when we use real antennas as
elements of the array to get the patterns of these arrays. Last we will
consider some array synthesis We must keep in mind that there are no
real antennas which have an isotropic pattern. It has been proven that
no finite sized antenna can have an isotropic pattern. If we look down
on antennas like broadcast’ towers they are omnidirectional and are
approximated well by isotropic antennas.

ADDITION OF FIELDS

Suppose there is a point which is receiving radiation from two different
antennas which are radiating at the same frequency. How do we add these
two radiations? The radiation from each antenna at the observation point
is represented by an electric field which is a phasor quantity. The

power is the product of two phasors.. We know from circuit theory that

we must add voltages or currents at a point in a circuit if the two are

at the same frequency or correlated. These phasor voltages or currents
can cancel each other out at a point in the circuit. So it is with an antenna.
When dealing with uncorrelated signals, such as noise, we add the power

in each signal. The answer is that we must add the electric (or magnetic)
fields and not the power since the signals are highly correlated (same
frequency). Since the magnetic field in an electromagnetic wave is
proportional to the electric field, we can deal strictly with the electric
fields and, as usual, ignore the magnetic field. Remember that the electric
field is expressed as a phasor, and the real and imaginary parts of two
electric fields must be added separately. The second point is that the
electric field is a vector quantity. Each component must be added
separately. Throughout this discussion we will assume in most cases

that all the antennas have the same polarization. We can ignore the
problem of adding antenna fields with different polarizationms.

RADIATION APPROXIMATION

Suppose we have two antennas spaced some distance apart. If both antennas
are radiating, then spherical waves are traveling away from each antenna.
Far away from both antennas the ratio of the two distances from the
antennas becomes nearly one. The electric field from each of them at

the observation point becomes proportional only to the input power

to each antenna and the average distance from them. But no matter

how far away from the two antennas the observation point becomes, the
difference in the distance to the two antennas is a constant. The phase
difference between the two signals depends on the difference in distances.
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Chapter 5 Antenna Arrays

We cannot ignore the difference between the distances for phase angles
of the electric field.

The point P in the figure above is an observation point. The field at
this point when the two antennas are isotropic radiators is given by:

E, -/BR 27
-J ' g -
— € E:. -/BR = =
3 + gt e £
Where E., and E. are the electric fields from each antenna at a unit
distance, Wheri the point P is moved farther and farther away, the
two angles 61.and 57% become equal and 1/R and 1/R, are considered
e

equal. The phase difference distance is fouind from the"triangle in the
figure below.

T

2 17—

Phase Difference Distance = d Cosé&

These are the radiation approximations.

ARRAYS OF TWO ANTENNAS

Assume that we have two isotropic antennas spaced on the Z axis, From
symmetry we can see that the pattern will be the same for any spherical
angle ¢ for a constant cone angle 6. If the antenna pair is rotated,

there is no difference in the arrangement of the antennas. For the
first case assume the antennas are spaced a half wavelength apart.
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Chapter 5 Antenna Arrays

Case 1., The two antennas have the same amplitude and phase angle.

We can find the maximums and minimums of the pattern by a few simple

arguments. Consider the pattern at & = 90°, In the far field

of the pattern we use the radiation approximation which says that the
directions from the two antennas are the same. We can use any line

parallel to the Z axis to add the fields.

=90
0’ 6=1 o The two spherical waves travel the

same distance to the line and the

A equal phases add. At this point
2 we have a maximum of the pattern.
o = 0°

At & = 0° we can use a- line perpendicular to the Z axis to find the
amplitude of the pattern.

The phase of the electric field from
antenna 1 is zero. The wave from
antenna 2 travels a half wavelength
before reaching the phase reference
plane and has a phase angle of 180°.

£ In the far field radiation approxi-

* mation the distance is the same to
both antennas for the amplitude. When we add these two electric flelds,
we get a null, By the same argument we can find a null at & = 180°,
But a better way to find this result is to notice that there is a plane
of symmetry half way between the antennas. The pattern is the same on
both sides of the plane. The full pattern is given on page 86. The
maximums and minimums are exactly where we predicted them to be from these
simple arguments.

Eo

e

Case 2. The antennas have the same amplitude but differ in phase by 180°.

N o On the line parallel to the Z axis the
two electric fields cancel since they
are out of phase by 180°. On a line

&Q perpendicular to the Z axis through

antenna one at the top, the phase from
antenna 1 is zero. The wave from
180° > antenna 2 travels a half wavelength
across the array and decreases the phase
by 180° giving a resultant phase of zero from antenna 2 at the reference
plane. These two electric fields add giving a maximum. There is a plane
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Chapter 5 Antenna Arrays

of odd symmetry half way between the two antennas. If we add 180° to

the phase of each antenna, we get the same problem we had above only
turned over. The amplitude of the pattern at & = 180 is ghe same

as the amplitude at @ = 0, The phase of the pattern is 180 with respect
to the pattern at & = 0. The full pattern is given on page 88.

Case 3. Two antennas are spaced one wavelength with equal amplitude and
phase.

On a line parallel to the axis between them the electric fields from the
two antennas will add in phase and give a maximum, If we consider the
plane perpendicu%ar to the Z axis, the phase from the.sccond antenna has
decreased by 360  to be in phase with antenna 1. There is a maximum at
o = 0° and by symmetry at € = 180°. Since it is impossible to have an
isotropic antenna, there must be a null between the two maximums. If we
pick a line where the difference in the distance between the two antennas
is A /2, then the d%fference in the phases of the waves from the two
antennas will be 180  and there will be a null in the pattern.
In the figure the difference in distance to
the two points on the plane defining the
direction of propagation is A /2 and there
. is a null in the pattern. The distance d
d is one wavelength. The null is determined
by triangle as:
e
N Cos & = 1/2 d = cosl(x) = 60°

The nulls in the pattern are at 60°. The full pattern is plotted on page 89.

For an isotropic array we just add the electric fields propagating from
the antennas to get the electric field associated with the radiation
intensity. We need to put this in formal mathematical terms. When we
find the far field point, we can pick any plane parallel to the plane
defined by the far field direction to add the electric fields. The
electric field on the plane from an antenna is the wave propagated to the
plane ignoring the 1/R dependence of the electric field. If S 1is the
distance from the plane to the antenna in the direction of propagation,
then the electric field at the plane is E e /B3 . Where E_1is the
magnitude of the electric field at the far’field point and °is the propa-
gation constant = 277 /X . Consider the two isotropic 'antennas spaced

some distance apart, d.///g,
£,

t

We will pick a plane half way between
the antennas to be the reference plane.
Given & as the direction of radiation
we can find the phase shift of each
array element to the reference plane
d which is defined by the radius vector
in the direction 8 . Positive
¢ distance is in the direction of propaga-
2] h tion, Remember that phase decreases
B itose with increasing distance. The
£ distance from both antennas to the
reference plane is the same: d/2 Cos &
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HALF WAVELENGTH SPACING 0. 180 DEG PHASES
AZIMUTH CUT

PHI = 0.
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Chapter 5 Antenna Arrays

The field at the distant point of the far field is

8 '
E = E, e‘/‘g‘casé_,‘_gae—‘//%?cos@

E, and E, are phasors which have magnitude and phase. In general we
can find the field from any number of isotropic sources using this
expression, N

/- ACR
E: Ztle ['4 /)
<
Where Ei is the magnitude and phase (phasof) of the field from the i-th
antenna at the far field point and d,(4, #) is the distance of the i-th

antenna to the reference plane defineé by the radius vector in the
direction (&, #) of propagation.

Now consider the equal amplitude and phase case with two antennas.

E = £, (6,//%76056 > e‘Jz*%{co.se)

From the Euler identity: Cos b = %( er + e-Jb), we can reduce this to

£ =2E, cos(éz-dcosé)

The maximum electric field from a pair of antennas is twice the electric
field from one antenna. The radiation intensity is proportional to the
square of the electric field or increased by a factor of four over the
radiation from one of the antennas, But remember that the input power
had to be split between two antennas. The net gain is two. The direc=
tivity is found by integrating the radiation intensity.

Radiation Intensity = 4 Eﬁ Cosz(zai Cos &)

Since the pattern has symmetry around the Z axis, we need only find the
average radiation intensity over the & variable. The second point

is the symmetry about the X-Y plane which says we need integrate only
from 0 to 7/2. If we note that the integral of the Sin @ from 0 to
77/2 is one, then the average radiation intensity is found from the

following integral. /4
2 2 /77d
Uy, :0/45, cos /ZT' co;é) smwé Jdé

Remember that Sin 6 d¢ is the differential length of the ¢ variable.
We can make the following substitution and solve the integral.

a = Z——;g—,cosé

da = “Z——:i‘/.mg 75
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Substituting these into the integral it is reduced to

d
A
Uaw = 7o | 4E5 costa da

6

od L 24 4 A

2
= E
4&s )4 A sm _2_7_7_4]
2 Zrd A
Using this result we can find the directivity.
U
Directivity = U—M-éx— = 2
AV | + S (Eéﬂ&i)
A
2774
A

The directivity is dependent on the distance between the antennas. For A /2
the Sin X / X term is zero and the directivity is 2. The directivity peaks
up for a distance between the antennas greater than A /2. A graph of the
directivity of an array of two isotropic radiators is given on page 92.

It appears like there is a contradiction here. Directivity is a measure
of the increase in the radiation intensity over an isotropic radiator

and if we assume . 100% efficiency, then gain = directivity. The

maximum radiation intensity from the two antennas is twice the radiation
from the antennas considered one at a time, Since each antenna is an
isotropic radiator, it would appear that the directivity should always

be two. But from the calculation on the-pattern, this is not so. What has
happened?

Each antenna in the array receives radiation from the other antennas in the
array. When this happens, the effective voltage on the antenna is not

the same when it radiates by itself, If we consider the interactions
between the two antennas, the problem becomes unduly complicated. When
working with arrays, it is easier to find the directivity from the pattern.
Otherwise for large arrays we would have to consider all the interactions
between the pairs of antennas. When we calculate the input impedance

of the antennas in the array, we must do just that. The input impedance
of each antenna in the array then depends on the magnitude and phase of

the voltage feeding the other antennas in the array.
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Chapter 5 Antenna Arrays

The expression for the two special cases of equal amplitude and phase
arrays of two elements comes from the formula above.

Half-wave spacing d = A/2

]

e s . 2.
Radiation Intensity UM.AX Cos™ ( > Cos 6 )
Full wave spacing d = A
Radiation Intensity = UMAX Cosz(ﬂ’Cos 6 )
These patterns are plotted on pages 86 and 89.

OUT OF PHASE ELEMENTS

Suppose that the second antenna in the array is 180° out of phase with
respect to the first. Then the electric field in the far field is:

-4 _ B4

E=Eg(e @CDSG GJE-COSQ)
-/

Using the Euler identity: smwa = -—(QJQ,_ eV )

The pattern response is reduced to £ = _/ LE, SNV (ﬂcos 9)

The phase of the far field is 90° out of phase with respect to the center
point between the two antennas plus, of course, the propagation phase shift,
This is the meaning of the j term in the expression above.

Radiation Intensity = 4 Ei Sin2(7‘é-2—d Cos(&4))

The directivity can be found by integrating the radiation intensity to find
the average radiation intensity. Again the magnitude of the radiation
intensity has symmetry about the Z axis and about the X-Y plane. The
integration is only over the & variable from O to 77/2.

/4
z
Uy = 46 J/N’//_T_'dcoséj.swa 79
(-4

We make the same substitutions to reduce the integral: @ = 7_,7':450-59
C/Q = —-”/,————{/5/419 dé
7d
A 1
- z
oy = 242 a/mza da = 284 [TD _ 15, (2rd)]
7d / 74 L 24 &£ A
z
The maximum radiation intensity = 4Eo Smw 7‘_%‘_{ d< /{/L _
kS
= E
4 dz 4,
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Using these expressions the directivity is:

ZS/NZ/_;ZQ,) Je
57#’(%5[%) - fjé;

J
(Z9)
2

Directivity = . (__4) C/ > /\/L

( 27rd)

Beyond a distance of d = A/2 the pattern no longer has a maximum at 6=0,

Directivity =

A

cos d = —

2d

Maximom 6 = COS—/(‘%>
EMAX =J/‘ZE, S/A/(:;E(E/_\a)) — \/'—ZE‘, S/in (.g—) —4 JQE;

A curve of directivity versus spacing in wavelength is plotted on page 95.
The interesting thing about this curve is that as the spacing between the
two antennas becomes less than A /2, the directivity increases. We can see
this if e plot the pattern of an array of two antennas with phasing of 0
and 180° and a spacing of 0.2 A as on page 96. If we compare this pattern
with the pattern on page 88, we see that it has s smaller beamwidth and
higher directivity. At multiples of A/2 the directivity is 3 dB or a
ratio of 2,

If we over lay the curve on page 92 where the two antennas are fed in phase
with the curve on page 95 and convert to ratio we find that the average
value of the two curves always equals two. These curves are given on page
97. We are now ready to talk about the interaction of the two antennas

in an array.

MUTUAL RESISTANCE

We can :.represent the circuit relationship of the two antennas as an
impedance matrix for a two port device.

V, 20 Tan T,
v 2 Zae I
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TWO ANTENNA ARRAY SPACED 0.2 WAVELENGTHS 0. 180 PHASES
AZIMUTH CUT

PHI = 0.
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Chapter 5 Antenna Arrays

We did this before when we discussed reciprocity. Using the reciprocity
theorem we established that Z,, for antennas made of linear

Z =
. . . . 2
isotropic materials, Z1 is tﬁe self Impedance of the antenna when no
other antennas are presen%.

Since both antennas are identical, 222 = le.
The impedance matrix is reduced to:
v, 2, 2 ||,
yl 'le '21/ I?-

If we feed both antennas equally, then the matrix becomes:
V] "2” ‘ZIL Il
V} ‘2)7_ -Zq T,
V, = Cqu'f 20T,

The input impedance is le + Z.,. This excitation is called the even mode.

12
When the two antennas are fed 1800 out of phase, the impedance matrix becomes:
v, 2y Tz I
- Vl %DZ, z“ "I(

The input impedance is Z - Z,, and is called the odd mode impedance,
We can find the input power to onie of the antennas as:

Pe = (R11 + R12) Ii even mode

= 2
Po = (R11 - RlZ) I1 odd mode

Where Ri‘ is the real part of the impedances., We have another calculation
of the pawer radiated from the calculation of the directivity. The integral
formula for directivity is:

T
Directivity = A7 Anax 4 Umax_

f/&lS/ug‘?/f{dg v P

The surface integral of the radiation intensity in the denominator is the
input power. For the even mode array the integral is:

//aswa#c/@ - #E(2(1 4 }‘A;;, S’N(azi)))

This is the sum of the power into both antennas. The power into one of these
antennas is just % of this.

= . A A
Pé’_ 47TE° (/ +»?7TC/ Ssa/ 7)
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If we had only one isotropic radiator, the power into it is the surface
integral of the radiation intensity.

- S 2
Po=4mE,y = £, T, (T, RMS)
In the even mode the two expressions for the input power can be equated.

2 \ 2mrd 2
47/-EQ (/ -+ '{’T}‘d S —/)—°~ = E“'I, (/ {_ ill
14

Using the equations above we can identify the R12/ R11 term.

Kz _ ) 2md

—_ SN

—ﬁz T 2md A

This is the normalized mutual impedance of an isotropic radiator. We can
find the input power to one of the antennas in the odd mode excitation:

p=d4re (| - Ke
R

When we use this with the maximum radiation intensity, we have the same
formula for the directivity of the odd mode as when it was calculated using
the integral. This alsc points out one of the problems of the odd mode
excitation, The input resistance which is the radiation resistance
becomes smaller and smaller as the two antennas are brought closer together.
The antenna material losses become larger with respect to the radiation
resistance and the efficiency decreases. The input impedance becomes so
low that it is hard to match the antenna.

We can use the method of mutual resistance to calculate the directivity of

a three element array with the elements uniformly fed and spaced.
We can find the maximum radiation intensity as 9E2

6 ¢/ from an axis parallel to the Z axis. To find th®
d directivity the total input power to all the elements
, must be calculated. The power into elements 1 and 3
o ¢2 is the same and is given by:
d P=amel(1+ Reld) P'z(zd))
00 ¢ 3 R” ﬁ’,’

The power into the center element is:
PL: 47,?5‘02(/ # E%’&.@Q)
‘"

It couples equally to both antennas on either side. The total power into
the array is the sum of these powers.

F%.=42}24,F;’= 4hTE%}(E§ﬂ‘ 66#%?!9? +_42§3252q0/>

"
The directivity is found by: . . !
477 Unax

e

DIRE’(%IV/"/Y =
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Substituting the expression for the total power and the maximum radiation
intensity, the directivity is found from the formula above.

Lo 7
Diegcriviy = (3 + 4Ry(d) 4 2R (2d)
Ry

One of the important thing to notice about the three element array is that
the input resistance of all three antennas is not the same. From symmetry
we can see that the two end elements have the same input resistance; they
see the same enviroment. The middle element sees another enviroment. The
input resistance for the three antennas is given by

=R, = Rao(d) , B _ 2 R,(d
K = PRy R,(/+.T§”.,L%:z;-0) 2= Rk 1+ '7%—)

If we look at the expression for the mutual resistance of two isotropic
radiators, then we will see that the mutual resistance is zero for a

spacing of A/2. 1In that case the input resistance is the same for all

the antennas. As the array becomes very large, the center elements begin

to all have about the same input resistance. In general the input impedance
of an antenna in an array is dependent on the excitations of all the other
antennas in the array.

If we know the normalized mutual resistance formula for a real antenna pair,
then we can use the same formula to find the directivity. The nice part

is that the integral of the radiation intensity does not have to be found.
For the general equally spaced broadside array the directivity is given by

NZ
N+ 22 (wk) Ralkd)
~ Zn

This has been plotted on page 101 using the normalized isotropic mutual
resistance, For a real antenna array this curve would be slightly
different because it depends on the mutual impedance expression. This has
been done for the case of half wave dipole when the elements are parallel
and has been plotted on page 102, We can notice a few changes from the
case of the isotropic antenna arrays. The increase in directivity is (N = 2)
more than 3 dB at A/2 spacing. This is because the mutual resistance

is not zero at this spacing but is aready negative. For all the curves
the maximum is higher than the isotropic case, Notice too that for N = 2,
the maximum occurs for a smaller spacing 0.65\ versus 0.7 . This
second curve corresponds to half wave broadcast towers.

Directivity

ENDFIRE ARRAY

Two isotropic antennas are spaced A/4 on the Z axis with a 90° phase
difference between them. Let us first find the maximums and minimums.

Draw a plane through the upper antenna and perpendi-
cular to the Z axis, The signal from the lower
A angenna travels A/4 and its phase is decreased by
7; 90", Both signals are at zero phase and add to a
maximum, There is no angle which can be added to the
. phase of both antennas to give the same problem; there
i is no plane of symmetry. Draw a line through the
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the bottom antenna perpendicular to the Z axis. The signal from the
upper antenna travels A/4 and its phage is decﬁeased by 90°. The two
signalsoon the plane have phases of 90  and -90, Since the signals
are 180 out of phase they cancel and there is a null in the pattern.
Now consider a line parallel to the Z axis. Each antenna retains its
phase. The two signals are out of phase by 90°. We can draw a vector
diagram in polar coordinates of the phasors to find the magnitude of the
response. Compare this signal with the maximum
signal of 2. The relative magnitude is: (2/2
: N = 1/f§: The power response is the square of
J this: 1/2. At 8 = 90 the pattern has its
& : 3 dB point. The 3 dB beamwidth is 180°.

Instead of calculating the pattern of this
/ particular pair, the general case of two antennas
in an array with equal amplitude and an arbitrary phase difference will be
solved. Consider two antennas spaced some distance d apart and a phase
angle difference between them of § . Assume that the upper one on the Z axis
has phase - §/2 and the lower one a phase of 5/2., The field is given by:

/B4 . _
o/g/z Eo(ej(% asé—%))L e,/(%qcosé A)
(]
= 264 cos (T coso - %)
3 - T coso - S =nm
gmg The maximums are at g <os 2
- 8/ 2
2 ini Td - _N\TT
The minimums are at Tcosg - 5/2 = (2n /)—2-_

This function squared can be integrated to find the average radiation
intensity and the directivity. The result is:

- . 2A
Dikectivity = MAx — _ 7rd
/ )+ sw(Ed)cos s A= cos (7 cosd - %)
=

For the end fire case & = T/2 and d = A/4; Cos& = 0 and = 1.
The directivity = 2. I1If d = A/4, then ALéle = 1. The directivity = 2
for all d ZA/4 if § = 90°. The directivity of a two element end fire
array equals 2 if d= /4; it is a constant, But for d >A/4, the
maximums of the beam will not occur at & = 0 but at g = cos "’(/\/(44))
The pattern of the two element end fire array is plotted on page 104,
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LINEAR ARRAY OF N ELEMENIS

Suppose there are N isotropic radiators equally spaced along a line and
fed with equal amplitudes. In general we can assume a fixed phase shift
between elements, This enables us to cover both broadside and endfire
arrays.

Direction of Radiation

Reference
Plane

The electric field can be referenced to the first (lowest) element on the

Z axis. Let ¥ = B d Cos€ + § , where § is the fixed phase shift from
element to element. The electric field is given by

. . '3 . =
E= Eo(/-f‘f‘/%/- e/ e %+,,,+ej(” %)

Multiply this by eﬂ’

: J J2¢ 3¢ 4, "
Fel? - Eo(e;ér‘é’ + e +eJ€,,,+e"¢)
Substract these two equations; the result is

Elr-e') = £,(1 /")
E= (- _ & eﬂz’f(e“ﬁz/j-— ~J;Ai/'é)
/- ed : :
e/¥ €~/%(eﬂ"/z _ €_J'sé/,_)

E = £, SW(V¥s)
S (%pg) ZL;?

If the center of the array is taken as the phase reference, then ; = 0,
The array factor reduces to

:Uk’(ﬂ/%%éj
SIN(%)

The maximum electric field is N and will occur when ¢9._ 0.

radiation curve is plotted on page 106 for this array. The abscissa is the

factor # =2md/) Cos@ + §. From this plot the 3 dB beamwidths can be
found. Note the curve repeats for negative values of

A universal
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0 JBdcosd=0 => 6 =90°

Case 1. Broadside 1)

Case 2. Endfire € =0 Bd+§ =0 5 = - pd

The beam may be pointed off axis as well, The beam will be at 9]} then
PBdCos@ + &§ =0 or §=-5dCos 6,. o

Example: ~Suppose the beam will be pointéd off at @ = 60  and the elements
are spaced A/2., Then

g:‘—z;‘—n—-—ﬁ—COSGO' = —700

This array for four elements is plotted on page 108,
HANSEN AND WOODYARD END FIRE ARRAY

Hansen and Woodyard showed in 1938 that the directivity of an endfire array
can be increased if the phase between the elements is changed to

S=-pd -7

Where N is the number of elements in the array. Take the case of 8 elements
spaced at A /4 intervals. The standard endfire array with 90 phase

shift between elements is plotted on page 109. The Hansen and Woodyard
endfire array has 112.5° phase shift between elements and has been plotted

on page 110,

Phase Shift 3 dB Beamwidth Directivity
-90° 80 degrees 9 dB
-112,5° A 11.5

The beamwidth has been reduced and the directivity increased 2,5 dB. We
have paid for the higher directivity with higher sidelobes. They
increased from 13 dB to 9 dB.

PATTERN MULTIPLICATION

Up to this point we have only considered arrays of isotropic radiators. We
will consider arrays made from identical elements which are pointing in the

same direction. The general expression for the field from page 90 with
nonisotropic antenna elements is

£. S e Al

Where E (Gg,ﬁ) is the normalized pattern of the antenna in the array.
We can separate this term out of the summation since each term is multiplied

by it,
N .
e~ £ (e, 7[’)25 e\//gqﬁ.(é/qf)
:
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Chapter 5 Antenna Arrays

POLAR DIAGRAM

Graphs such as the one on page 106 can be used to draw polar patterns of an
array for various element spacings and interelement phasing by a graphical.
technique. We will call these polar diagrams.

On page 107b is an example of a polar diagram. The top of the page has a
rectangular plot which is a repeat of the graph on page 106 for six elements.
Notice that the abscissa is proportional to Cos O. A polar diagram or
pattern constructed from the top curve is drawn below. The maximum value of
Cos O is one when © = 0, which means that the maximum value of the abscissa
is Bd + & . The spacing between elements is d and the phase shift between
elements is § . In the example § = 0. ' The total range of the abscissa in
the top curve is 2 3d. Around the polar pattern below is a dashed circle
with a radius equal to Bd. When the edges of the dashed circle are marked
off on the upper curve, these lines are the limits of the visible region.

No portion of the upper curve beyond the visible region will appear in the
polar pattern since Cos O is less than or equal to one.

Consider the vertical line drawn from the null at 60° in the top rectangular

plot to the circle below The distance from the center of the rectangular
plot is A d Cos 60 this is also the distance on the polar diagram below
using the dashed curve. When O is measured from the horizontal line as

shown, then a line drawn from the intersection of the vertical line and the
circle to the center of the polar diagram will give a line on which the

polar pattern amplitude will be the same as the rectangular plot above.

Both points are in a null. If we consider the second vertical line which

is drawn to the left of the origin, then we see that it intersects the dashed
circle in two points. Draw . radial lines from these points to the center of
the polar diagram. The amplitude along this line will be equal to the
amplitude on the rectangular curve. To construct the total polar pattern,

we must consider many such vertical lines in the visible region, find the
intersections, draw radial lines, and match amplitudes. In these diagrams
the radius of the polar pattern is equal to the maximum amplitude of the
rectangular plot,

The element spacing in the example on page 107b is 0.25 wavelengths. The
maximum value on the rectangular plot still within the visible region is 90°
for Bd Cos 6. On page 107c¢ is polar diagram of the same number of elements
only the element spacing has doubled to 0.5 wavelengths, The rectangular
curve on this page is the same as the previous page. Now the dashed circle
of the polar diagram will double its diameter from the previous example as
shown. The maximum value of Bd Cos O in the visible region has expanded to
180°. As before we draw vertical lines from the rectangular plot on the top
of the page to the dashed circle. At the intersection points we draw radial
lines to the center of the diagram and mark off the radial distance the same
as the vertical distance on the rectangular plot. Notice that in all these
diagrams the curve for negative O is the same as positive 0. The array has
an axis of symmetry about 6 = 0 which means the pattern is the same for all
values of @ for a given 6.
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Chapter 5 Antenna Arrays

Let us now consider a case where there is a phase shift between each element
of the array. The polar diagram on page 107e is such a case. We still
have the rectangular plot of a six element uniform array drawn on the top

of the diagram. The center of the polar diagram dashed circle has been
displaced from the center of the rectangular plot by the value of the phase
shift between elements, § . The values of the abscissa on the rectangular
plot in the visible region now range from - gd + § to gd + S and the
dashed circle bounding the visible region has been moved off center.

In the example on page 107e the phase shift between elements is 90° and the
spacing between the elements is 0.25 wavelengths, The polar pattern shows
that this an endfire array with the peak of the beam at 6 = 180° which is
found from the vertical line drawn from the center of the rectangular plot
to the edge of the dashed circle below. The polar pattern is still construct-
ed by drawing vertical lines from the rectangular plot to the dashed circle
and marking amplitudes along the radial lines to the intersections to be the
same as the rectangular plot. We could get a beam in @ = 0 direction by
using a phase shift between elements of -90; then the dashed circle which
bounds the visible region would be moved to the left of the center of the
rectangular plot.

Let us consider the polar diagram of a Hansen and Woodyard endfire array.

On page 107f is such a diagram for the same six element uniform array. The
spacing between elements is a quarter wavelength which w111 establish the
required phase shift between elements as Bd + 180/N or 120° for a 31§
element array. The center of the dashed curve has been moved to 120" with
respect to the center of the rectangular plot. Notice that the peak value
of the rectangular plot is no longer in the visible region. To get a normal
plot it will be necessary to scale the lengths off the rectangular plot so
that the peak of the polar pattern will occur .on the outside circle of the
polar chart. We can see again that the beamwidth of the array has decreased
from the beamwidth given on page 107c for the ordinary endfire array, but the
sidelobes have increased levels, They have increased because the peak of
the beam does not occur at the peak of the rectangular plot and the sidelobe
levels are increased in the same proportion.

LINEAR PHASED. ARRAYS

The polar diagram is a convenient way of looking at linear phased arrays. In
a phased array the direction of the beam is controlled by the phase shift
between the elements. Once we have picked the element spacing, we establish
the diameter of the dashed circle which bounds the visible region of the
pattern. As we vary the phase shift between elements we move the dashed
circle to new points below the rectangular plot where we can construct the
polar pattern.

The polar diagram on page 107g is one such case. The spac1n§ between elements

. is 0.5 wavelengths and the phase shift between elements is 90 . We are still
using a six element uniform array. The range of the abscissa has been
doubled from the previous plots and shows that the rectangular plot is a
periodic function. It has a period equal to 360 The diameter of the dashed
107d
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circle has been scaled to the abscissa of the rectangular plot so it is one-
half the diameter of the plot on page 107¢c which has the same element spacing.
The peak of the beam occurs when Bd Cos 0 + § equals zero.

0 = Cos! §

m —751?
The peak of the beam on the polar pattern on page 107g is at 120° or the beam
is scanned 30 off broadside.

The polar diagram on page 1071 is the same array scanned further off broadside.
The Bhase shift between elements is 150 which gives..a beam which is scanned
56.4° off broadside. Notice that the beam for negative © is starting to
merge with the beam for positive © into a single endfire beam. At the same
time the sidelobe at © = 0 is growing. If we mentally shift the dashed circle
over slightly to a center at 180, we can see that an endfire beam will be
formed at © = 180° but that the beam at 8 = 0° will grow to the same amplitude.
This is similiar to the two element array pattern on page 88.

On page 107j is a polar diagram of a scanned array with 10 elements and a
spacing of 0.75 wavelengths between elements. The pgase shift between
elements is 60° which puts the beam peak at 8 = 102.8 or 12.8° off broadside.
For the larger spacing between elements it takes larger phase shifts between
elements to scan the beam. The same phase shift between elements of a

0.5 wavelength spaced array would scan the beam 19.5° off broadside. A polar
diagram of the same array with an interelement phase shift of 90° is drawn
on page 107k. The beams have been shifted 19.5° off broadside but another
beam has been formed with the same amplitude as the '"main'" beams at 6 = O,
This beam is called a grating lobe. If we continue to scan the beam to
further angles off broadside, the dashed curve will shift to the right

and the grating lobe will split into two beams and scan away from 6 = 0.

This means that if we have a phased array with the spacing between elements
greater than 0.5 wavelengths, then the beam may be scanned on a limited

range before grating lobes occur. The scan angle at which the grating lobe
appears is given by the following formula.

) .
0 = Cos-l"360/6'd d since § = 360° -IBd
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Chapter 5 Antenna Arrays

The radiation intensity is the square of this expression.

We can recognize the first expression of the product to be the radiation
intensity of each element. The second is the radiation intensity function
of an array of isotropic antennas. The factor of the pattern of an array
of isotropic sources is sometimes called the space factor or array factor.
To find the pattern of an array of real antennas, we find the array pattern
of an array of isotropic antennas and multiply this by the normalized
pattern of the element. Remember the assumption has been made that
every element of the array has the same pattern and that each one is
pointing in the same direction. 1In general the array of unidentical
antennas can be found from:

N

E- S eedes/PlLOY p= 2L

¢
Where E.(8,¢ ) is the voltage pattern, including phase, of the i-th
antenna In the direction (& ,¢). This is a tedious process, but the
computer does not mind.

SPACE ARRAYS

We have only considered arrays with the elements spaced along a single
axis (usually Z axis). Antennas can be arrayed in general space arrays.
We will look on these as linear arrays of arrays. If we consider one of
the axes of the array, we can treat the antenna array along the other
axis as the element pattern for the linear array. We can do this from
pattern multiplication. 1f S (©, ¢) is the space factor for an array
along the X axis and S_(6,¢) fs the space factor for an array along the
Y axis, then the space’ factor of the whole array is the product of the
two space factors: Sx(é, ¢) Sy(é, #). For the general array we have

E(s,4) = £ (6,8)5(44)5, (44) 5,09
Where S = 2 E(~ e J/gﬂf (4, &)

e’

We can use this pattern multiplication to synthesize space arrays.
Example: For the example we will consider a six element array three
elements long on the Z axis and two deep on the X axis, The object

is to get a single main lobe. Suppose we string out the three antennas
at half wavelength spacings along the Z axis and feed them equally. The
pattern of such an array is given on page 112, We need to eliminate the
lobe on the negative X axis. This can be done by forming an endfire
array in the X axis, If we put another row of elements a quarter-wave
behind the first set and feed them at 90° out of phase with respect to the
first set, then an endfire array will be formed. The pattern of the array
along the X axis is given on page 104, When we combine the two array
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factors, the pattern on page 114 is obtained. The front lobe is pretty
much the same but the backlobe has almost been completely eliminated; the
little sidelobes are quite insignificant. The two lobes at 8 = 0 and

6 = 180° have been reduced as well, In the other principle plane cut
we still have the basic two element quarter-wave spaced endfire array
pattern given on page 104,

SIDELOBES AND NONUNIFORM AMPLITUDE ARRAYS

We have only considered arrays which have uniform amplitude excitation. The
general patterns of these arrays are given on page 106. For these arrays
there is one or more beams of equal amplitude. The lobes below these beams
are called sidelobes. Note that the maximum sidelobes tend toward 13 dB
below the main beam as the array size grows.

In a radar antenna this level of sidelobes is objectionable because a
jamming signal can be transmitted into the sidelobe and confuse the
system., Also large reflectors will appear to be at a different place
because the system assumes the reflections are in the main beam.
Without some adaptive array processing, the sidelobes limit the
dynamic range of the radar receiver.

The sidelobes can be reduced by putting an amplitude taper on the array.
A distribution based on the binomial coefficients will give a pattern
with no sidelobes. The binomial coefficients are found from the equation.

X + Y)N'1 = xN 1, (N - 1) xN-2y 4 A= 1;,(N = Z)XN:SYZ + .. .

For N equal six the coefficients are 1, 5, 10, 10, 5, 1. The plots
on pages 115 and 116 are the patterns of the 6 element array with and
without taper. We have paid a price for the elﬁninabed sidelobes
because the beamwidth has increased from 17.2° to 27  and the gain has
been reduced.

The other problem with the binomial array is the wide variation of the
amplitudes, The coefficients are the excitation voltages; the power
ratio of the 6 element array is 100, It is difficult to build the
power division network with a large variation in the output power. If
this was a six by six planar array then the ratio of the outputs would
be 40 dB. A radar antenna would require a much larger array than this
and a binomial distribution becomes impossible,

There is a class of optimum arrays called the Dolph Tchebyscheff distri-
bution which gives the maximum gain for a given maximum sidelobe level,

In general all the sidelobes are the same size. We will discuss these
when we cover array synthesis.
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Chapter 5 Antenna Arrays

CONTINUOUS ARRAYS

A continuous array is an array of discrete sources where the distance
between the elements is infinitesimal and the amplitude is also infinit-
esimal but there is an infinite number of them. The general formulas
for the discrete arrays become integrals,

a )2 The figure is a continuous array on the Z axis
1 from - a/2 to a/2. At some point, Z, the
é:dZ magnitude of the source is EO(Z) dZ on the array.
o The phase difference from the center of the array
is jBZ Cosé& . The far field response is. given
:‘as .t .
dE = E_(2) e JPZ Cos 4
'E'L for this differential source. Notice that the far

2
field approximation has already been applied. To find the response of the
array, we must integrate (sum) the differential sources over the limits of
the array. %

E =f£°(%)e/;3260564;‘_
~%

Where E (Z) is the far field response of the electric field for each point
source on the array at Z,

UNIFORM CONTINUOUS ARRAY

The easiest problem is the uniform continuous array where EO(Z) = E
constant., The integral becomes

% %
E = E;/@ /ﬁi(‘oséd(? _ _i“ 6}/‘/8'2‘(6.59 s
- ‘Blos &
% pees "%

a
o?

£F= & [ P37 cosé o BE 6059]
J'/;COJG
1

Using the Euler's Identity Sin b = - 2 (e ib e-Jb), the equation
reduces to J

£ = L& sw (B2 c.,sa)
/?COSW9 z

Let % = /Ba " Cos @ , then the equation becomes
£ = Eiict ~57A/(?&£)
Ye
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If we normalize this, it becomes E = SIN 4&/2 « A universal pattern

£i2

of this function is plotted on page 119. We can see that the first sidelobe
is down 13.3 dB from the main beam. The peak of the beam is at 9 = 90
where all the infinitesimal sources add in phase.

The beamwidth can be found from this curve.

-1 _79.5A4 . 159 )\
180 L L

Beamwidth = 2 Sin
Where L is the length of the continuous array.
We will discuss this again when we study the radiation from apertures which
is a continuous array in two dimensions, For that we will use pattern

multiplication of a continuous array of a continuous array to obtain the
pattern.
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