Chapter 7 Radiation from Magnetic Currents

MAGNETIC CURRENTS AND CHARGES

From Maxwell's equations we have seen that there are no magnetic charges
or currents. Nevertheless it is convenient to introduce them becuase

veB =

they add symmetry to the equations and give solutions from symmetry relation-
ships. The magnetic currents can be used with an electric vector

potential analogous to the magnetic vector potential for finding the fields
of slots. We denote the magnetic current density M which is similiar

to the current density J . The currents through a surface are found from

the surface integral of the current densities.

='//53</.§ k:/[xz.dg

GENERALIZED MAXWELL'S EQUATIONS

Adding the magnetic current to Maxwell's equations they become:

= 0B
Faraday's law: VX E = - Se -M

fE oF = _%/55-45 - s

Ampere's law:

VX H = %%-/—J'

$7.q7 - J)Fd5 + 3%/[5. 45

Gauss's law: VD =

/Dq’ [//ﬁd/

Magnetic Gauss's law: V.E =

,/S‘E‘d‘f: ///OMQ/V

Equations of Continuity

v.T= -9F
3t

VoM = - 9P
ot
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Chapter 7 Radiation from Magnetic Currents

Above are the generalized Maxwell's equations including magnetic currents, M,
and magnetic charges, n® Using these we can define a vector potential
and simplify it until it only gives far field solutions.

— e

ELECTRIC VECTOR POTENTIAL

The two generalized Maxwell's curl equations can be expressed in phasor
notation.

VXE =-/cuH -M VKH =/ weEE + T
Assume we are in a charge free region so that

VDE = Q0

We can then express the electric field as the curl of some vector function.
The traditional choice is

E = -VXF
Substituting in the second curl equation this becomes

VxH = - we(vxF) +T
VX(;/--f-J'CUeE) =T
Because we are in a charge and current free region we can let J =o0.

A vector whose curl is zero can be derived from the gradient of a scalar
function.

i+/we;=—vﬁ7

¢ is called the magnetic scalar potential, the dual of the electric scalar
po?ential. Now substitute F in the first curl equation.

VXVXF = _jQull + M

Substituting the equation for the magnetic field, we can eliminate it from
the equation of the vector potential, F .,

—

VKUXF —WHMeF =M - jwuvd,

The term curl curl can be expanded to

vx VXE = v(ve E) —p*F
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Chapter 7 Radiation from Magnetic Currents

The equation of the electric vector potential becomes
V(VeF)-VF - adueF = M~ il 7

Because of the arbitrariness of F we can pick the divergence of the
electric vector potential arbitrarily. We will choose to reduce the
equation above by picking:

V" = "/ #&n
The differential equation then reduces to
ViF + wiue = - M

We can identify @ue as B°. Using this electric vector potential with
magnetic currents, the electric and magnetic fields can be found from:

F= —VxF
7= - jweF + V(@ F)
J e

Similiar to the magnetic vector potential, the electric vector potential is

found from the magnetic currents. —_ - B~ _F
g F- AT,
g lF-F"

IF-F {
This is the dual of the of the magnetic vector potential.

The far field of a magnetic current distribution can be derived from the
electric vector potential when the far field radiation approximation is
applied to the equation for the potential.

/‘/=—‘/'¢‘J€/E

Where the far field F becomes

— 4”r/Me-Jﬁ/r r/d ’

The magnetic field is in the same direction as the electric vector potential.
The electric field is found from the magnetic field because it will be
orthogonal to the direction of propagation and the magnetic field.

==7(H’

The field from both electric and magnetic currents can be found by consider-
ing each current separately with the other zero. In that case the fields
from each type of source can be found from the corresponding vector
potential. Since the fields are linear, the total fields are the sum of
the partial fields from each source.
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Chapter 7 Radiation from Magnetic Currents

All this is nice, but we have not seen any magnetic currents. Remember
they do not exist. We can approximate certain current distributions as
magnetic current elements and distributions of electric fields on a
boundary can be replaced by magnetic currents from boundary conditions.

SMALL CURRENT LOOP

The small current loop can be analyzed as a magnetic current element. This
loop of current is equivalent to a magnetic dipole.

T - y
9m 4 =1 T4

Im
where I is the uniform current in the loop, A is the area of the loop, and

the magnetic charge. The magnetic charge is related to the magnetic
current by the continuity equation.

= — O
Tm= - 5%

Therefore the equivalent magnetic current element is

Ty L = +3—Z—j’4 = jeu TA

The magnetic current density is
= To0 §GF) &, = jumTA ()4,

where S(FQis the Dirac delta function. Using this the electric vector
potential of the magnetic current element is

- SUMTA AT g
& <rr S Aa

The fields of a small current loop are found using this electric vector
potential and E;- ag = -8Siné.

-/ WuUTA _, '
Eg = g__;_”;__efﬂr(grl3+#)5,”e

= J QUL _,8r
Hr J“%—"e/’g AN —-—/—-——-3) cos @
7""’ /(A)/t(r
14% = J/€9%4:E)4 Cgi/ygf(/v/aJE + / + / /).S/Utg
q4m a s S r

These expressions include both the near and far field terms. As with the
small incremental dipole, the radiation terms are those with 1/R dependence.

— C():’i( IAB .-‘/}B/‘ - = II .
£ 4 - €V smé Ho = E4_7r7~i e /P smé
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Chapter 7 Radiation from Magnetic Currents

The following substitution can be made <« = /57 = %’Z‘IZ

The far field equations for the loop antenna becomes
m ~,Br 7T1-_A "f
é;ﬁ'= :L221_~ e~ﬁB~Sﬂv69 Heg = = E?J/3~5ml6
Ar Arr
The power in the radiated field can be found by integrating the Poynting
vector over a sphere centered on the magnetic current element.

a1 T
/Dr = —//r‘Smé E¢f/;‘c/t9dy§

VA

_ nlza) T
P" - /Z“‘““;\‘i—“" 277’/5/,«/39 Jé
7

p o 8pm(za)"
r
3%

The radiation resistance of the antenna can be found from the radiated power.

R ad

- —

" Tl

Therefore the radiation resistance of the small current loop is

3 2T
p = BT A 3149474
r 3/‘4.
Since the incremental magnetic dipole has dual fields from the incremental
electric dipole, the patterns are the same but with opposite polarizations.
Both have directivity of 1.5 or 1.76 dB.

BOUNDARY CONDITIONS

The boundary conditions given on page 152 must be extended if we allow
magnetic currents and charges. When we allow a magnetic surface current at
the interface between the two mediums, then the tangential electric field is
no longer continuous across the boundary. Vectorially this becomes
A — =, _ =
n )Q(E2 El) = MS
where MS is the vector surface magnetic current and T is the unit normal
vector into medium 2. The tangential electric field discontinuity is
given as
- E = - M
EtZ tl s

where Ms is flowing through the surface enclosed by the line integral given
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Chapter 7 Radiation from Magnetic Currents

in the figure below.
oM,
@

A
h
Similiarly when magnetic surface charges are allowed, then the normal compon-

ent of the magnetic flux density does not need to be continuous across the
boundary.

~ b Y —
n'(BZ -Bl)—/om
The normal component of the magnetic flux density is no longer continuous.

SLOT RADIATOR

Let us consider a slot cut in an infinite ground plane as shown in the figure
below.

There is a voltage impressed across the center of the slot along the X axis.
The voltage aleng the slot will be a sinusoidal function; the dual of the
dipole. The slot is a transmission line which is shorted at each end. This
transmission line is called slot line. The voltage along the line is a
standing wave with the voltage given as:

V= Vysm (B(& - 12/)

Since this is a small width slot, the electric field in the slot can be con-
sidered a constant.

176
Fundamentals of Antenna Design by Thomas Milligan Copyright 1980



Chapter 7 Radiation from Magnetic Currents

Ex = ——‘:1/"- S/A/(,@’(?L - /2()

where W is the width of the slot.

First consider the region Y > 0. We can replace the tangential electric

field in the slot by an equivalent magnetic current. From boundary
conditions we have

M =Ex %
S

where % is the unit vector in the Y direction. This will make the fields
zero in the region Y < 0. with an electric conductor in place of the slot.

We now have a continuous conductor with a magnetic surface current density
in the region of the slot.

Slot Location

From image theory for magnetic currents we have the result that the image
of a horizontal magnetic current element is also horizontal and in the same

direction.

., 3 Conductor
/1
/

Image z g z Source

/
y M
/
/
/]
7

The conductor ground plane behind the slot can be replaced by an equivalent
image source if the solution is limited to Y > 0.

!

1

Image f Solution
.&_, Region * : Region
— - A . -
L ?i M= Exn Equivalent L * Mg=2EX n
T = ﬂ ‘ |
l
Electric —e
Conductor pn
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Chapter 7 Radiation from Magnetic Currents

The magnetic current density is in the Z direction.

M = 2E a Since @ = a_ x a
s X ‘z z x y

or M = 2V
s m

sin(g( 3 - l21) %

zZ

We now use the electric vector potential to find the fields.

Since the slot is small the integral over the X component reduces to just
W, the width of the slot.
%

Z cas @
M
6

M
A

- Jﬁfy
F, = m[/J,”(/g(L %))e,eecaseqf

‘B2 Cos B
z
The result of the integralsis
-/Br
A = Vi e VA [cos(ﬁ_’-z_: Cosé) —-Cos(,Bé)]
mr Bsmé

We can find the far field magnetic field from this using H = - jweF

He = &-9'67;//-3 = jwe smé A

- e L o))
}55//«/ é

We can reduce this by noting: B= w/&ﬁ and 7 = //_‘é.
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Chapter 7 Radiation from Magnetic Currents

H, = /'Kn e /A" 505/3'=z-<059)—<as(/5—z£’)
47777” swvé /}/;>‘j

The far field electric field is found from E?¢ = "7*ﬂ9

We will now have to find the solution for Y < 0, In this region the
normal vector to the conductor surface is in the negative Y direction.
Using the ' same arguments about the conductor and image magnetic current
densities, the equivalent magnetic current density for Y < 0O is

[

Ms = —2Ec Ay
M = -ZV jp—
M;,- T/ﬂ 5/4/(/8(-% —/%l)) ai_

This is the same magnetic current density as the positive Y region and
has the same solution except the sign has been changed.

Yy = 4 Vm €FT cas(PE cose) - cos ()
77TV' S/al 6

)/<O

The electric field associated with this magnetic field in the far field is

Eg=-yHg
The field is linearly polarized since there is only a E  component. This

antenna is the dual of the dipole antenna. The radiation intensity is
found from

0('-’—5,6#:#"‘

2
Y = [Vml™[ cos(p& Cos®) — cos(BE)
77:'Z Smw 6

The antenna has symmetry about the Z axis so that all great circle cuts are
the same and are the same as all the patterns given in the section on radia-
tion from currents. Notice that the phase of the electric field ¢ component
changes from O to 180 degrees when the plane Y = 0 is closed,

RADIATED POWER AND RADIATION CONDUCTANCE

The total power radiated from the slot is the surface integral of the
radiation intensity.

i

P.,=[/asme O’@q’ﬁ

2 T z
p. = [ Vil 21 [cas (’é-z: cos @) - C"S(%e}] Je
777.1 S @

o
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Chapter 7 Radiation from Magnetic Currents

The radiation conductance of the slot is found from the radiated power.

e = =

R 2

/ Vil

Like the dipole, we have used the maximum response of the sinusoidal voltage
as the reference for the radiation conductance.

v
G = 2. { cos (/5% Cos 9) — Cos (/324:)]20/9
R )77T A S ©

This integral is similiar to the radiation resistance of the dipole antenna
which is found on page 129. T

< = E’%/[cos(,gécase)—COS(/@%)]ZO,G

p
(wike Dipore) Sm 6

The two integrals expressions can be equated giving the following result.

G _ 4 Ro (wike Dipsce)
'e(SLoT T 2
Dipoke) 4

where 4 1is the characteristic impedance of free space. The radiation
resistance of the slot dipole is
2

1

4R (wike DiPocE)

Rn (swaT DipoLe) =

The input conductance is the conductance seen by the source. The radiation
conductance is the ratio of the power radiated to the input voltage.

6 = _f
7Y e
The input voltage is found from the assumption of a sinusoidal voltage wave
on the slot. The input voltage is

R (-
l/‘—' VmS/N%‘

The input conductance can be found for the input voltage and related to the
radiation conductance referenced to the maximum sinusoidal voltage wave on

the slot.
o br o = l"swz('%)
[4 2 ¢
Sw 6%?) f;(wuezw%qy

The radiation resistance referenced to the maximum voltage and the input
radiation resistance of the slot dipole are plotted on page 181.

GAIN (DIRECTIVITY)

Since the slot dipole has the same pattern as the wire dipole, it will have
the same directivity. The curve of directivity is given on page 134.
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Chapter 7 Radiation from Magnetic Currents

BABINET'S PRINCIPLE

The dipole and the slot antenna are called complementary structures. The
solution of the slot dipole can be found from the equivalent wire dipole
and an interchange of the electric and magnetic fields. The following are
complementary structures.

7
L

Mm
N\

A

Babinet's principle is stated as follows. Suppose the field without a screen
is Fo‘ The field with a screen is F., and the field with the complementary
screen is F . A complementary screenn is the interchange of the opaque

part and theSclear part. Then the following relation holds.

F0 = F1 + Fc

The relation seems obvious except it does hold when there is diffraction from
the edges of the slot. Booker has extended Babinet's principle to vector
electromagnetic fields. Strict complementation of an electrical conductor
requires a magnetic conductor which does not exist. Booker has solved this
problem by using only perfect conducting infinitesimally thin screens in
both cases and an interchange of the electric and magnetic fields between

the screen and its complement. 1f we take two such complementary screens
and perform line integrals over the same paths in both cases, we get the
result.

Z 1is the impedance of the complementary structure, Z. is the impedance

of the structure, and /1 is the impedance of free spacé (376.7 ohms).

This result includes the whole complex impedance and not just the resistive
portion which we saw for the thin dipole and slot complementary structures,

Self Complementary Structure - Many times an antenna will be made from a
structure which is self complementary. That is, if the conductors and spaces
are interchanged, then the same structure results. The most common case

is the flat spiral antenna. The antenna and its complement will have the
same input impedance.
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Chapter 7 Radiation from Magnetic Currents

This is obtained by rearranging the equation above. When we take the
square root,we find the input impedance to be 188 ohms. These antennas

are then fed with a 4:1 balun transformer and are fairly closely matched
to 50 ohms (1.06 VSWR).

The slot antenna can be made equivalent to the wire dipole and the results
for the impedance of a wire dipole can be used for slots. The complement
of a slot is a flat strip dipole.

7
y,' L

7
Ry

The strip conductor has been related to the round conductor in the fellowing

diagram. zg//_ Wire
-~ Strip
AN
_q’_ZLA—Z— a=W/£|.

\ /
~
FW

The equivalent wire has a radius equal to % the stripwidth of the flat
conductor. Given a slot radiator, the impedance across the slot is found
as follows: An equivalent wire dipole has a diameter one half that of the

slot width and the same length. The impedance of the dipole is Zd' From
this the impedance of the slot is
2
z = ﬁ—-—
s 4 Zd

If we take the resonant thin half-wave dipole antenna, its input impedance
is about 67 ohms. The equivalent slot has an input impedance:

2
- (376.7) -
ZS % (67) 530 ohms

The full half-wave dipole has an input impedance 73 + j 42.5 ohms. The
full half-wave slot will have an input impedance of

(376.7)2

Zs T R03 + 3 42.5)

363 - j 211 ohms
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Chapter 7 Radiation from Magnetic Currents

When the half-wave slot is too long for resonance, its impedance is
capacitive; whereas the half-wave dipole is inductive when it is too long
for resonance. These are complementary impedances.

The impedance of the slot is so high that it is difficult to feed it from

a coaxial line. There are two solutions. In the first solution the

length of the slot is increased. The longer equivalent dipole has higher
and higher input impedances as the length approaches one-half wavelength;

the complementary slot will therefore have lower and lower input impedance

as the length is increased toward one-half wavelength. Kraus in Antennas
gives an input impedance of 50 ohms for a slot 0.925 wavelengths long

and 0.066 wavelengths wide. The equivalent dipole has a length of 0,925
wavelengths and a diameter of % of the width of the slot or 0.033 wavelengths.

The second solution is to use an offset feed. On page 136 offset feeds for
a dipole was discussed. The results given there hold for the slot in a
complementary sense. The same coordinate system as the center fed slot

is used for the offset feed.

Magnetic Vv L=~
Current .7 T~_
(Tw) |7
2=-% 2=9 23 -2—=‘—-L-
S S L LS4l //
/ Slot Feed

77777 4

The voltages at the ends of the slot are zero and increase sinusoidally
from the ends. In general there is a discontinuity in the slope of the
voltage curve at the feed point but the voltage on each segment must be the
same. The voltage across the slot is proportional to the electric field
across the slot. The equivalent magnetic current in the slot is propor-
tional to the elctric field. Therefore the equivalent magnetic current

is.
_ e
Im(Z) = I 1 Sln,e(2 Z) Z > ?
- ; L
Im(Z) = Im2 Sln,B(2 + Z) 257
The continuity of the voltage and magnetic current at Z = ? gives

. )
Ty SRAG -9

This will be satisfied if

I, Sin/5(-2L-+?)

1= ASin/g(-ZIf- +§)and I, = Asmp@ - §)
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The result is that the magnetic current in the slot is given by

]

I(Z) = ASing(Z +§)SingG - 2 zzg

L L
] L _ . L <
Im(Z) A Smp(z ;) S].nlg(2 + Z) z< ?
The fields can be found using this magnetic current and the electric vector
potential. We can have the same problem with the one wavelength slot as
with the full wavelength dipole. If it is offset fed, then the distribution
will be

-7 '"\\\ Magnetic Current
~ 7

B —

////////////////

Slot Feed

and there will be a null in the pattern perpendicular to the slot. The
easiest way to find the input impedance of the offset fed slot is to use
a wire analysis program and take the complementary impedance. When the

slot is a resonant half-wavelength long, then the impedance will decrease

approximately as
.2 L
Sin” 8 (5 -‘;’)

as the feed is offset from the center by § . Take the resonant half-wave
slot with an input impedance of about 510 ohms.

L = .45A
We can solve the above equation for the 50 ohms feed point.

50

_5) T s/

st ZI(,%',{
A Z

Solving for ? we get:
= 434 A -,/‘*
—_— = L S :EE
4 z zr V570
F=1744

AEA e Feed Point
l////////////uf

Z |

T 7777

——n

185

Fundamentals of Antenna Design by Thomas Milligan Copyright 1980



Chapter 7 Radiation from Magnetic Currents

SLOTS WHICH RADIATE ON ONE SIDE OF THE GROUND PLANE

All the cases covered above are for slots which radiate on both sides of the
ground plane. Most slots are backed by some cavity or transmission line
and radiate only on one side of the ground plane. The results given above
can be modified to account for this. Just like the monopole, the antenna
will only radiate on one side. The radiated power is found for a slot in
the X-Z plane by the integral:

-
ﬁ~=;/i)/j:5wvé?cﬁ9qﬁé

e “a
This is one half the power radiated on both sides. The radiation conductance
of the slot is found from the radiated power.

3

z
7
The maximum sinusoidal voltage across the slot is the same as the slot which
radiates on both sides. A slot which radiates on only one side of the
ground plane has % the radiation conductance of the slot which radiates on

both sides. Since the radiation conductance decreased by %, the resistance
is increased by two.

Gk =

The directivity is four Pi times the maximum radiation intensity divided by
the power radiated. Since the power radiated is only one half with the
same maximum radiation intensity, the directivity is twice that for the slot
which radiates on both sides. The directivity is found from the graph on
page 134 by adding 3 dB.

The slot can be limited to radiation on one side of the ground plane if the
other side is enclosed in a cavity. For a slot with shorts on the ends of
the slot transmission line, a waveguide section can be used for the cavity.

The depth of the slot is a quarter-wave long in the waveguide. We will discuss
waveguide relations when horns are covered. The guide can be made longer

or shorter to resonate out any shunt admittance of the slot at the desired
frequency if need be. If the shunt admittance of the slot is zero, then

the quarter-wave shunt shorted stub of the waveguide section will present an
open circuit across the input and can be ignored.
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The input impedance of a slot is very high compared with the coax char-

acteristic impedance. If the feed is moved towards the short in the
cavity, then the input impedance will be reduced.
I P

Raas
N
l N\

§§§§SQQVV13\\\
---x-—-f

The impedance decreases approximately as the formula given above. The
impedance can be decreased further by feeding close to one of the side walls
and close to the back wall,

P" = ES COS(EZ_‘T_)_()

A cavity can also be formed in a stripline structure where the depth behind
the slot is small.

Shorting Pin

Plated Through Holes

Slot

Ground Plane

The antenna is fed by a stripline circuit from below which can contain a
power division network for arrays. Plated through holes are fabricated
between the ground planes around the radiating slot which is etched in the
top ground plane. These holes form a waveguide cavity between the ground
planes. The cavity is fed by a TEM wave between the center conductor and
the two ground planes. The center conductor passes under the slot and then
a pin is used to short it to the top ground plane. This pin excites the
slot by impressing a voltage across it,which is one way of looking at this.
The other way is that the loop between the center conductor and the upper
ground plane is a magnetic loop which excites the waveguide cavity formed
by plated through holes. This method says that the rows of pins must be
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Slot Pin ///Plated Through Hole

SIS
A
\ Center \-— Ground Planes

Conductor

N
L

X///
\ \%

Cross Sectional View of Stripline Fed Slot

spaced greater than one-half wavelength in the dielectric constant to form
a resonaht cavity. The resonant cavity loses energy from the slot and loads
the TEM transmission line,

The bandwidth of this slot is proportional to the thickness of the cavity amd
the width of the slot. It is generally a narrowband antenna. The bandwidth
is mostly related to the thickness of the stripline ground planes and not the
width of the slot. The slot must be offset fed to achieve a low impedance
from the slot and match it to the transmission line.

PARALLEL PLATE SLOT
Another method of restricting the radiation to one side of the ground plane

is to use an aperture in a ground plane fed from a parallel plate waveguide.
The parallel plate guide can support a TEM wave.

N

Inc1dent ’ Q

Wave
.,\7:)\\:\ S \ 1

P
%

~
:"‘f;r

o

S \\\ \n,
BN

N,
TN N ,‘\l

Side View Front Vlew

The slot has a uniform field across it without: zero fields at the edges.
Harrington Time Harmonic Electromagnetic Fields p. 183 has the approximate
conductance and susceptance per unit length of slot.

T, (Ba)"
Ly %]

B, = (3135 - 2Ln(Ed)
AR

en

q
T<o:/
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The effect of the susceptance  is to make the parallel plate transmission
line appear longer at the slot to the effective open circuit. The parallel
slot feed looks like the figure below.

!_‘___2’/\/4________._
I Feed
Slot \\\\ Short
' EJ Center Conductor

Shorted to Top Plate
Coax Feeder

This antenna can be analyzed as a tranmission line network:

///, Feed Pin Inductance
[ 1

]
Gaw BaW Zo /‘0‘/ Zo Short
—
Slot I“P“B
w width of Slot

The impedance of the parallel plate transmission line can be found from the

parallel capacitance and the velocity of light in the medium between the plates.
From transmission line relations we have

/

% = ¢

C is the capacitance per unit length and v~ is the velocity of light.

2, = 2 €
° M//‘;=_’2i 5/~<e7:/7—::a-

e, w

The impedance of the parallel plate guide is usually very small., The feed
point can be found to match the coax feed to the slot and parallel plate
waveguide structure. It is found that the resonant frequency is a function
of the position of the feed. The input impedance is lowered as the feed is
moved toward the back short. It usually takes some trial and error process
to get the antenna to be matched and resonant at the center frequency. The
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size of the slot is limited to about 1.9\ in width where the slot impedance
is about 50 ohms and the feed is at the edge of the slot. The input imped-
ance follows the expression for impedance given on page 187 for a waveguide
fed slot.

EFFECTS OF FINITE GROUND PLANE

It is obvious that the ground plane cannot be infinite. We must deal with the
effects of limiting the ground plane. Kraus . has stated that the input
impedance of a slot antenna will be about the same as with an infinite ground
plane if the ground plane extends for at least one wavelength on each side

of the slot. The impedance is a second order effect. The pattern will

show marked effects from reducing the ground plane.

There are nulls in the pattern of a slot in the directions of the axis of the
slot; orthogonal to the electric field. For any reasonable ground plane
(>A/2) , the H plane pattern will not show the effects of a finite ground
plane. The E plane is another matter. With a finite sheet the

pattern shows scalloping. As the size of the sheet is increased the number
of undulations increases but decreases in amplitude. Since the slot radiates
in the directions of the edges in the E plane, by diffraction theory there
will be equivalent sources at the edges of the ground plane. The size of
these sources is k e?js where k 1is less than one and § is a phase
shift relative to the slot phase. As the size of the ground plame increases
the factor k decreases.

~—n

%
/b

.
"

The edge sources form a two element array whose response is
L
2K cos (/82 c0s6)

This factor will add to or 8ubstract from the slot radiation depending on
the phase term at & = 90 . Once this is determined, then the undulations
in the pattern are fixed in the coordinate 6 . We can determine these by
finding the voltage maximums and minimums of the two element array. We

must note that there is an axis of symmetry about the slot. The undulations
below the axis of the slot will be the same as above. To take advantage

of this symmetry we will rotate the coorginate so that & = 0 occurs
on this line of symmetry (former & = 90). The two element array factor
becomes
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Chapter 7 Radiation from Magnetic Currents

2K cos (?%F]L stgﬁ)

This factor will add to the radiation of the slot when the argument of the
cosine is 2 n77 , assuming Cos § 1is positive.

o
-/|—L Simwd = 2nTT

The two element array will subtract from the radiation of the slot if the
argument of the cosine is (2n - 1)7, when Cos § is positive.

a
TL S/A/ﬁ = (2,,_/)7‘,"‘

Max/(Min) = Sin-l(—g—%4é—-)
Min/ (Max) = Sin'l(ﬁz—“fm—)

Whether these locations are maximums or minimums depends on whether Cos § is
positive or negative. The positive values are given above; the parenthet-
ical expressions are for negative Cos § .

A plot for various ground plane sizes is given on page 192, These are
locations of maximums or minimums for various sized ground planes. Once

the sign of the undulations is determined at boresight, then all the maximums
and minimums can be determined from the graph. An example of these
undulations is given on the measured plot on page 193 of an E plane pattern
on . about 3.5) ground plane. The scalloping is approximately where it is
predicted to be from the graph on page 192. This case was for two slots
spaced 0.32) and does not exactly follow the graph.

RADIATION FROM COAX

Consider a coax opening into a ground plane, This open circuited coax will
radiate some of the energy.
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E Plane Pattern of Two Slots Spaced 0.32 Wavelengths on a 3.5 wavelengths
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Chapter 7 Radiation from Magnetic Currents

The electric field in the open circuited coax is

E v
r f“lh(@éd
where P’ is the radius of the coax and V is the voltage across the coax. It
is assumed that the field over the aperture is the same as the transmission
line mode of the coax. This field can be replaced by a magnetic surface
current with zero fields below the ground plane.

v, - _V
P ptnlbn)

This loop of magnetic current density can be analyzed as an equivalent electric
dipole over a ground plane.

)¢
AMTTITTETETETETEE T T

The total magnetic current moment is
2T b

KA = [[.g_w;‘ gp %

_ TV -a?)
Z?Zﬂl(éﬂa) |

The magnetic current moment is equivalent to an electric current element.

If = - jweKA

All this has assumed that b<< A . We can find the radiated field by using
the method of images and the magnetic vector potential, The source is

2I0§(F) = —J«€ TV -a) §CF7)
Ln(bsa)
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where the current element is in the Z direction and S(Fois the Dirac
delta function. The magnetic vector potential is

A, = —jwe W"V(é"-—qy Q-//S,-
27r dn (b/a)

The electric field is given by Eg = jw/qA Siné . From page 123 we
. X . z
find the electric field as

Ey= @ €y Vb6t -a? /Fr
20n(ba) AF

Sinv &

2
The Poynting vector is found from IEbL/h

5.': 7

we V(b*-aY) 2__1_; SO
2 Lntbia) A r

The total power radiated is
Zﬂ"ii/'é

P = / S, rswédeds

o

The integral over @ is only from O to 7/2 since the field is zero below
the ground plane.

2 2
27,-7 Iwéﬂ'l/(bz-d) 2

F =
" 2 A Ln(bsa) 3
% | _
since /5/”39 4O = 2 We can recognize w e = 21
° 3 7
which reduces the expression to
p - 4| mHeT-aVV
T3y ASLn (b/a)

The radiation conductance is found from
6= 1 _ 477'5[ bt -a® ]2
N7k 31 L An(bsa)

The formula is only an approximation because it was assumed that the coax
opening is small with respect to a wavelength. . The radiation decreases
with the fourth power of the wavelength. As the coax grows, the radiation
becomes larger but of course, the formula grows more inaccurate.
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Chapter 7 Radiation from Magnetic Currents

The open circuited coax in the example above was radiating out of a ground
plane. We would like to know the power radiated from a coax without the
ground plane. Since the coax is small we can assume that the cable does

not mask the radiation which was below the ground plane, The field strength
is the same with or without the ground plane. The energy is radiated over
all space and not just half; therefore twice the power is radiated and the
radiation conductance is twice

Gp = 8775[ pr-a’ 7?
* 3p L A%t

On page 197 is a plot of some common cable radiation resistances or 'open
circuit" impedances.

With this example we have come full circle. On page 174 a small current
loop was analyzed as a magnetic current element. In the example above
the small magnetic current loop has been analyzed as an electric current
element. This is an example of duality. If we have a problem with only
electric sources and the same problem with magnetic sources, then the
solutions are the same with an interchange of the following quantities.

Electric Sources Magnetic Sources

'\.\\
g g > Gl oo
X
. .

N
™

/:/7

This is due to the symmetry of Maxwell's equations and the vector potentials.
Since the fields are linear we can divide the problem into two parts., One
is part contains only electric sources, J, and the other only magnetic
sources, M. When the solution for each part is found, then the total
solution is the sum of the two separate solutioms,
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Chapter 7 Radiation from Magnetic Currents

WIDE SLOT

We have only considered narrrow slots and ignored the retardation time
across the slot which restricts the solutions to slots narrow in wave-
lengths. For a wide slot we will still assume that the electric field
is constant across the slot.

E = v§11_311n;3(-21= - lz}) Y >0

Using this tangential electric field, the equivalent magnetic current density
can be found with the current backed by an electric conductor. The image

of the horizontal magnetic current density is in the same direction. When
the conductor is removed and the image source included, then the equivalent
magnetic current density in free space becomes

M = 2Ex® = 2E =7
X 2z

When we integrate over this current density, we must find the distance to
a zero phase reference plane for each direction of radiation. The center
of the slot will be picked as the zero reference point of phase. For

a given angle of radiation the distance from the source point to the zero
reference plane is given as

X'sm6cosd +2'cos g

When the far field electric vector potential is found, this term is used
in the phase term and not in the amplitude 1/R term.,

/E: @J/g ZVm/:/ /8(—— —/%/) J)é’(zswacosgé +-3cosa)
wh

47 r w
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Chapter 7 Radiation from Magnetic Currents

The integrand can be divided into two functions each one is a function of
X or Z. When a double integral can be divided like this, then the integral
is equal to the product of two integrals.

@ 4 | 1 b
/f(x)j(%)dldi =/9(%)4% f(x) I

The integral expression for the electric vector potential is just this form.
The integral can be expressed.

-, W L
E = @J’ng JﬁXS/A/écosﬁ 4 J2cosé .
2Trw Yy /5”"/5(_ ~I2l)e dz %
T

R

The above separation of the integral into two integrals is a mathematical
expression of pattern multiplication for apertures. Each integral taken
separately gives the pattern of a linear array along each axis. The result
of the two integrals is

F = GV/Fer {J/A//?/"avz cosg swé)(| cos (/?é CO'SG) - cos (BE
z
TEY ,3-2&’ cos8 5w é S té

Using this electric vector potential, the far field magnetic field is found
from

ﬁ/e:.\/wégsm/é /5.-_— w//e
The magnetic field for the region Y > 0 is

e Y e /Py, [5,,«,5(-2&/Casﬁ siv6) [(qs (/?—Lz'— c6s @) — Cos (/Bé)]

77/'*7 ,B-'gf (05;55/;'/6 S/~ &

The electric field in the far field is found from the propagation of spherical
waves in the positive R direction.

=-_-77/Z9

The total power radiated can be found by integrating the Poynting vector
over one-eight of the radiation sphere and taking eight times this because
of the symmetry of the fields around the slot.

P = B/Vm/// SIN 63-2—C05¢5/4/6) [CoS(PzCOSQ) C‘OS(/B?_)] dg¢¢
Z/%/) casﬁS/N P S @
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R

The radiation conductance of the slot is found from G, = ,Vlz.
m

If the slot radiates only on one side, then the conductance will be one-
half the value for the slot which radiates on both sides. The radiation
conductance is

e/,
4N //Aswz(/g.z"f_/asgﬁsxueﬂ[cos(ﬁ’% cos8) - cos(B

%)]49 dé

Cb$l¢§§mvgg

RADIATION FROM A WAVEGUIDE OPENING INTO A GROUND PLANE

§‘

Suppose we have a waveguide transmitting the dominant mode opening into a
ground plane as shown in the figure above. If we assume that the aperture
field is the same as in the waveguide, then the far field can be found.

The aperture field is

£ - £, cos (B2)

Using this tangential electric field, the equivalent magnetic current
density can be found from

pu—4

M=2Exh = 2,50(05(1’5:1‘) a, y>o

The phase difference of each point on the aperture to the zero reference
point is

B(X'smécosd 4 2'cosg)

Using this magnetic current density, the electric vector potential can be
found by integrating over the aperture plane. The far field electric
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potential is given by the followmg 1ntegra1

_ J,Br 3 78 (x 5/N€cos¢ -/--Z'COSG)
E = Ze //605[77'2)8 # e A,

This integral can be separated 1nto the product of two integrals. The separa-
tion of the integrals is the mathematical expression of pattern multiplication
of two linear arrays. The far field electric vector potential is

’5— _ 2E,b 5w ﬁ/i.z_q..s/uécos‘# Cos (ﬁzé 6056)
r)85m/6605¢ (77"*_936 Cosé)z)

From this the far field magnetic field is found from /A% =‘/'w€ A s
Using the expression lgzw/m , the magnetic field is

- J2Eb P 5., (5_23 swo cosd) cos (F’Z—b Ca.sé)
7)"(05¢(772_ (/366056)9 )/>O

The electric field in the propagated spherical wave is found from: EqS - qu

The total power radiated from the waveguide can be found by integrating
the Poynting vector over a large sphere. It is difficult to relate this
to a radiation conductance in the waveguide. The aperture field is the
combination of the field incident on the aperture from the wave traveling
down the guide and the reflected wave at the aperture. The aperture
electric field is related to the electric field in the waveguide mode by:

£, = E,(1+T)

where [ is the voltage reflection coefficient of the aperture.
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REFLECTION OF WAVES

The reflection of plane waves at a boundary will be considered. From the
boundary conditions on page 153, we know that the tangential electric and
magnetic fields are continuous across a boundary. Suppose an electromagnetic
wave is propagating at an angle f with respect to the Y-Z plane with the
axis,

electric field parallel to the

X

The figure above shows the wave with the directions of the electric and
magnetic fields. The coordinate, Z', in the direction of propagation is
given as

Z = -2'605; %Zs/u?’

The unit vector in the X' direction is
Doy = dx“‘sf’ —&;.s/u?

The electric and magnetic fields are given by
= /) z" Y (ZS/V
£ E, /P 2506,/,5 f-ﬁi’-cos?)

Y = K, (G cas(g _&'g S/A,;)(o’//?(l’sw; + 2 casé?)

Now suppose we have a wave traveling in the negative direction as well,
The equations for the electric and magnetic fields are given by

é} = 55)63145(;2Y5MV; + 2 casgi)
Ho=-H(acasg + a,swg) oI BCXsmg 4 2 cos g
since 5}4/(—;} = - SM’F and c¢os (_g) - Ca.s(;)

If we take the superposition of these two waves with equal amplitudes and
180~ out of phase, then the two equations are combined to give an electric

field.
E/ - /4 (G’-J'/Bx S/A/F . €J)3IS/M§) @—/',B%CO.SF
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We can combine this using the Euler identity Sin U = flf( eJU - e-JU)

E)/ _ 11/4 S (/BX 5/4}%’) e—:/fg'aco& ?

Let us denote j 2 A as E, Be=PBSNE | and 53‘,5“5; . Then the equation
for the combination of the : two equal traveling waves is

E, = £, 5w (B 2) oI P T

The combination of waves traveling in ¢ and -¢ are a wave and its reflection
from a boundary. A wave and its reflection have equal angles. Since the
waves are out of phase at X = 0, the waves cancel on the boundary and
satisfies the conditions for a conducting boundary (i.e. tangential electric
field component equals zero).

In the X direction we have a standing wave pattern. If the boundary is a
dielectric boundary, then the tangential electric fields of the wave and its
reflection will not cancel since there will be some wave in the dielectric.
These reflections must be considered when designing radomes.

RECTANGULAR WAVEGUIDE

The rectangular waveguide is a hollow metal pipe with its cross section a
rectangle;.:

Y

7 7 7 7 2 L

b
ht——— g ————
Z
We can use our solution for the combination of two waves traveling in the ?
and -¢ directions with respect to the Y-Z plane to find the solution for

the dominate mode in the waveguide. Looking straight down on the wave-
guide from above, we see two traveling waves in directions ? and - % .

Ey® \?\
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This will be a solution if the boundary conditions can be satisfied.

At a conducting boundary the tangential electric field must vanish. Our
trial field is

E)/ = EO RYIV (/BQX) e_\/'/Bj%

The electric field is only in the Y direction so the electric field has no
tangential component on the top and bottom plates of the waveguide parallel

to the X-Z plane in the figure. This field satisfies the boundary conditions
on these plates.

The trial field has zero tangential component on the plane X = 0 since
Sin(0) = 0. It only remains that the E_ field must be zero on the plane
X = a. This is satisfied if Y

Bea =nTr n=10¢3,. ..
The permissible values of S, are called eigenvalues. The dominant mode is

given for n=1, When n and a are given, the direction of propagation
of the two equal reflecting traveling waves is given

Bswg = ni B= 2T
a

A
= =1/ n A
; SN (_%_Q,

As the frequency increases ghe wavelength decreases and the angle decreases.
If nA =2 a, then © = 90 and the wave does not travel down the guide but
reflects back and forth between the two walls X = 0 and X = a.

Low Frequency

Cut-off Frequency
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This wavelength is called the cut-off wavelength of the waveguide. To pro-
pagate the dominant mode, n = 1, the frequency must be high enough so that
the wavelength is less than 2 a, twice the width of the waveguide. The
cut-off frequency of a waveguide in the dominant mode is given by

F, (GHz) = 5.9014/¢ a[{r ) a - width (inches)

The two waves which are reflecting back and forth between the walls are
traveling at the velocity of light in the dielectric filling the waveguide.
Since the waves must travel back and forth, the propagation of the waves in
the Z direction is given by

Py = BcosE

We can find a relationship between the propagation constants in the X and Z
directions by using a trigonometry identity

2
/B(S/Alz;° # (‘oglg) = /51
z 2
P+ Bs = BT
2 z 2z <
/63 = /éi f/Q = (%;) —7é?1
The waves traveling in the waveguide have a wavelength associated with /59

—~ 27
/%‘"‘;g

We can find the guide wavelength from these equations.

by D
// —(/\%C)l

As the free space wavelength approaches the cut off wavelength of the guide,
then the waveguide wavelength approaches infinity. The phase velocity of
the waves is found from the equation.

Since the guide wavelength is larger than the free space wavelength, the phase
velocity in the guide is larger than free space. This can be seen from the
following diagram

Direction of Propagation
of Plane Wave
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When the phase changes as the wave travels from point c to d, the phase
must change by the same amount traveling from g to h. The wave must
travel faster to cover the larger distance in the same time. A waveguide
is called a fast wave structure. The actual energy is reflecting back
and forth between the two plates and still traveling at the free space
velocity. Velocity of the energy or group velocity is less than the
free space velocity where group velocity and phase velocity are equal.

CUT OFF WAVEGUIDE
When the wavelength exceeds the cut-off wavelength of the guide, then the

hollow pipe will not propagate the energy in this mode. The propagation
constant is complex for these frequencies and the wave is attenuated in

the guide.
_ 21T
X = — /\oz - )\:‘ nepers/length
doe

-xX2

The propagation in the Z direction is €

The electric field is transverse to the direction of propagation and this
mode is called the TE10 (Transverse Electric) mode.

E = Ei,fbﬂ(?ﬁ;k) é?:A£%~a

The magnetic field can be found from Maxwell's curl equation.

=
0
R
N
)
&
n
.
X
M

Aﬁ,_

|
»
n
A
®
&
g
S,
&

The wave impedance in the Z direction is given by

E
Z,= X - M a (>f
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In a waveguide both the impedance and phase velocity are a function of
frequency. A transmission line with these properties is called dispersive.

The waveguide is only useful until the next higher order mode can propagate
in the guide. Most of the commercially available waveguide has a height
about one-half the width. 1In that case the next higher order mode is TE 0
or TE,. mode. The waves that are reflecting back and forth in the TE, , mode
are traveling a full wavelength between the side walls. The guide must have
a width greater than one wavelength for the wave to propagate in the TE

mode. In the TE., mode the waves are traveling back and forth between ghe
top and bottom wa?}s, across the narrow dimension of the guide. Every
waveguide mode can be described as two waves reflecting back and forth in
the guide as it propagates. The general TE _mode waves are at an angle

to both the sets of walls of the rectangular %avegulde.

We could be perfectly happy only considering the electromagnetic waves
reflecting back and forth between the parallel plates across the width of
the waveguide. These waves induce currents in the walls of the waveguide.
We will need the distribution of currents to discuss slots cut in the wall
of the waveguide. The currents can be found from the tangential magnetic
fields and applying the boundary condition given on page 154; the surface
current density is

On the side walls 1 = 5# for x = 0, The magnetic field at X = 0 is

There is only a Z component at X = 0. The surface current is

7 = Lebo ~yBj2

J/q
For X =a, 10 = -EX and Cos(/gca) = -1, therefore the magnetic field is
"7= /Bch e—Jﬁg%
J M _
From the vector cross product - E% b4 EZ = a , the current on the wall
X = a is y
- _ =y
T = /_@4_ e Bz

The currents on the side walls are in the direction of the height on the
waveguide and are traveling waves in the direction of propagation.

On the top and bottom walls the normal vector is -a_ and a_, respectively.
The surface currents on these walls are y y

—

Ts = A X Ty + Hy Ty)

—
p——

Js = A, //x + Ay %/_Z lower wall
I5 T Aath — aHe upper wall
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f.—. ‘/?ch [ Cos (,Bc)() _d_x Sin oy = - B
S ‘c:-/-(— J = 2 (/67(/2) d%] g ‘/’% lower wall

T, = Bl [cos(ap) & Z, | VBT
s ._.C;q___[ /gc,l’) X L S/M(/!Ql) aa_] @J’%‘ upper wall

Note that the currents in the X direction are 90° out of phase with respect
to the electric field. The field in the X direction is a standing wave
while the currents in the Z direction are in phase with the electric field
(voltage) which is true for a propagating wave. The X directed currents
on the top and bottom walls match the side wall currents.and are zero in

the center of the guide. The Z directed currents on the top and bottom
walls are equal and opposite and correspond to the currents on a two wire
transmission line. These Z directed currents are a maximum at the center
of the guide and taper to zero at the side walls,

SLOTS IN RECTANGULAR WAVEGUIDE

When we consider slots cut in the walls of the waveguide, we will make the
following assumptions.

1). The slot is narrow

2) The slot is resonant; length=~ A/2

3) The field in the slot is transverse to the long dimension and varies
sinusoidally along the slot and is independent of the exitation
system.

4) The waveguide walls are perfectly conducting and infinitely thin.
Even through the walls are not infinitely thin the differences
between this idealized guide and real guides are small,

The slot is excited by cutting lines of current in the walls of the guide.

If the slot does not cut the lines of current in the walls, then the slot
does not load the waveguide transmission line and there is not power transfer
to the slot, The slot can cut two types of wall currents. If the slot
cuts Z directed currents, then the slot will appear as a series load to the
waveguide. Currents in the X or Y directions are shunt currents and slots
which cut these currents present shunt loads to the waveguide transmission
line.

SIDE WALL SLOTS g

: oA
BRI RETRS ST

The currents in the side walls are only in the Y direction and are shunt
currents. Any slot which cuts these currents are shunt loads. The slot a
in the figure does not cut any surface currents and is not excited by the

=2
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waveguide. The slot b cuts the surface currents and is excited by the
waves in the waveguide. The shunt load the slot loads the guide is

._——oég =K swie)

The load is proportional to the square of the sine of the angle with respect
to the Y axis, This is the only possible side wall slot,

TOP WALL LONGITUDINAL SLOT

i - -

z

The longitudinal slot can only cut currents in the X direction. The X
directed currents are shunt currents between the top and bottom walls;
therefore the longitudinal slot is a shunt load to the waveguide. The
X directed currents are

Ig = J; cos (IB<X) /8( = _‘_2_‘
I = T3 X
X cos (ZE)

In the center of the guide, X = a/2 and the X directed surface current is
zero. The slot a in the figure above is not excited because the currents
are zero in the center of the guide wall, Note this is the slot location
used for a waveguide slotted line and is not excited by the traveling waves
in the guide. As the slot is moved off the center of the broadwall, it
cuts currents and is excited. Slots b and ¢ 1in the figure above are
excited. The two slots b andoc cut currents with different signs in the
X direction and are excited 180 out of phase. The equivalent circuit of

this slot is
%3 9=K cosz(ﬂc_t&)

where X is the distance from the edge of the guide.

TOP WALL TRANSVERSE SLOT

]
.
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This slot will cut Z directed currents and will be a series load to the
waveguide, The Z directed current in the top wall varies as

J, = 7;5//1/(7—‘7(2‘)

The slot a in the figure above is centered in the top wall and cuts more
surface current lines than the slot b which is offset from the center by
a distance X,. The center slot presents a larger series load to the wave-

guide and is excited more than the offset slot. The equivalent waveguide
circuit element of the slot is

—VWW—
R E:Eacos(%)

[ ————

where X1 is measured from the center of the guide.

INCLINED BROADWALL SLOTS

\
et

=

If a slot is cut in the broadwall slot centered and at an angle with respect
to the X axis, the slot will be excited when &6 < 900. The centered slot
will cut X directed currents on both sides of the center line, but since

the currents are 180  out of phase on the two sides of the center line, there
will be no net shunt current cut by the slot. The slot has no shunt

loading to the waveguide. The slot also cuts longitudinal currents. The
amount of longitudinal current lines cut depends on the cosine of the

angle 9 . Since the slot cuts only Z directed currents, it is a series
load to the waveguide transmission line.

o— M0 2
R R =&, cos 6

[ SS—’
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