Chapter 8 Horn Antennas

INDUCTION THEOREM

Suppose we have a screen with an aperture and an incident field on the
screen from the left. There will be fields transmitted through the screen

E¢ H¢ \ /::z: gt
— ‘I'S —_—
- —>n
ER H*

to the right, Et, Ht, and fields reflected by the screen, Er, Hr. The total

fields on the left of the screen is the sum of the incident and reflected
fields.

E = E- + E° H=H" +8

Over the surface, S, the tangential components of the fields must be contin-
uous because there is no medium to support any currents or charges.
t i r t i + r

= + =
Etan Etan Etan Htan tan Htan

Similiarly the normal components are continuous across the aperture because
there are no trapped charges on the boundary.

Now let us define a scattered field as the combination of the reflected
fields to the left of the screen and the transmitted fields to the right

of the screen. We can generate this scattered field by a distribution of
sources.over the aperture in the screen. This scattered field is discontin-
uous in the aperture. The discontinuity in the tangential electric field
is equal to a magnetic surface current density given by the boundary

condition:

ﬁ; = E -F)x A
given on page 175. The tangential magnetic field discontinuity is equal
to an electric surface current density:

To- ax@t - ")

from the boundary condition on page 154. These currents are the virtual
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Chapter 8 Horn Antennas

sources of the scattered field.

We can find the difference of the reflected and transmitted field from
the continuity of the fields across the aperture boundary.

Y - Ef = B at - wf= @

Using these equations, we can find the virtual sources of the scattered
field from the incident wave by combining the above sets of equations.

=]

M = E x T = mxH
s s

These virtual sources are a function of the incident wave and they radiate
in the presence of the aperture screen. In general the problem is still
a boundary value problem to find the scattered field, but we can approx-
imate the scattered field by using the Huygens source approximation.
Fortunately, the radiation scattered toward the aperture is small and we
can find reasonable approximations in the direction normal to the aperture.

HUYGENS SOURCE

The Huygens source principle states that every point on a given wavefront
can be considered as a secondary source which gives rise to a spherical
wavelet. The wave at a distance field point can be obtained as a super-
position of these elementary wavelets. We will use the induction theorem

to define these sources more precisely.

Suppose we have an aperture with an incident field with only EX and H
components. Using the induction theorem we can define virtual sources” on

the aperture which can be used to find the transmitted fields., The equi-
valent magnetic surface current is

Similiarly, we can find the equivalent electric surface current for the
magnetic field.

J = axAi = H axa = -H 7
s y z y y X

The radiation from these virtual surface currents can be found by using
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Chapter 8 Horn Antennas

the magnetic and electric vector potentials, The differential electric
vector potential is found from the magnetic surface currents.

Rl

TF dx dy VR

Ex dx dy ay

The far field magnetic field is found from this as H = -jw €F,
/%9 = _\/wélﬁ; 59-@ = —J'O)e /jj Ccos O 5/‘/¢
The differential magnetic field due to the differential source is

Hodsxdy = J2LE £ cos 6 sim b Ixdy
dmrr

The electric field from this source is Eg = -4 Hg ; substituting /fwé = 21
we get the differential electric field. A
s './/'g'—
Egdsdy = /=
2

£y Cos b 57~9{¢(<;V

Similiarly, the Hg component can be found and the E, field from that
as Ey4 = le.,¢, then

//%dx@j/ = —\/O)éﬁ Eﬁ'@dxd}/

4 dxcfy

Jwe Ex VAT
_-‘\_ﬁ—v
4mr

Cos d dx
EQQIXQ/)/ = \/'6"//5" 5 505¢ c/xd/

The radiation found from the magnetic vector potential due to electric
surface currents also adds to the total field. The differential magnetic

vector potential is ,
_e /B

@Va'xoj/ a,

Adeay =

qmr
The far field electric field is found from this as E = -jauA,

Eo =~/ “UAxdq " o Ef = ~/wHAag > Ay

The differential far field electric fields due to the differential surface
current is -/'/3r
_  jw
Eéq’xc;’y” JM e //}, cos & ‘05¢<7(X</)/
4rr

Egdxdy = — /YA eV sw $ chﬁ/
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Chapter 8 Horn Antennas

One of the key elements of the Huygens source approximation is to assume
that the fields in the aperture are free space waves so that the ratio of
the electric field to the magnetic field is equal to the impedance of free
space. This will be true for apertures which are at least a few wave-
lengths across. The Huygens source method will give approximate results
even when this is not true. With this approximation we can replace the
magnitude of the magnetic field in the aperture with the electric field
divided by the impedance of free space. If we also note that iy = 'ULQ
then the electric field from the electric current sources can be replaced
with:

Ee </x<//v = J'ZG;.//g"Ex cos O cos ¢ dxd)/
r

Ep dxdy = =/ GZZ/BFEx s XY

When we combine the electric fields from both types of differential sources,
we have the total differential electric field in the far field.

Eec/xc/y = /i:frex(l+ Cos@)cos b <9(x<//v

Eg dxdy = ‘j%}ﬁh&‘x {1+ Cos @) sing dxqﬁ/
r

These equations are the differential electric field Huygens source fields.
We can find the total field by integrating this over the aperture. _The
magnetic field can be found from the propagation restriction, |H| ={E!/q .

PROPERTIES OF HUYGENS SOURCE

Polarization The source has both & and # components for an X directed
E field in the aperture. The far field X and Y components are found

from
Ex = Eo(Cosp &yoqg — Sw &= Ty)
Ex = E£,(cos b cosg + smw3g)
£y = E,(cosf dy+dy — sme 3y ay)
= £o(cosd swh cos@ - s b cosg)
= £, (cos6 /) cosf s b '
@E=0 F=£, £E,=09 £, = J'e_//sir’&}o(lwkfosé)

e 2Ar

Obliquity Factor The Huygens source fields have the factor (1 +,Cos & )/2
which is called the obliquity factor. This is the same as Cos (& /2).
The source does not radiate equally in all directions but has a pattern.
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Chapter 8 Horn Antennas

Phase Shift The curious thing is the extra phase shift of the Huygens
source., There is an extra 90° phase shift in the differential source term,
It has been said that this is due to the extra velocity of a spherical wave
at its source,

Restrictions We must remember the restrictions due to the assumptions,
These are:

1) The aperture is wide enough that }EW = qlﬁlin the aperture. For
smaller apertures we could use the Z directed impedance.

2) The proper boundary conditions have not been applied to give zero
fields on the material around the aperture. This restricts the
field solution to 8 mnear boresight. The method will not predict
more than a few sidelobes.

APERTURES

We will use the Huygens source to analyze the radiation from an aperture.
Suppose we have an aperture in the X-Y plane with a known incident field.
Also assume that the aperture is large enough for the Huygens source restric-
tions to be satisfied, i.e. |E| = n |H, in the aperture. An aperture is a
continuous array in two dimensions. For each direction of propagation we
will need a zero reference plane which is used to find the phase difference
of each point to the far field point. By the radiation approximation, it is
assumed that the distance from each source point to the far field point is
the same for all points on the aperture for amplitudes. We will have the
zero reference plane through the origin of the coordinate system; then the
distance from a source point to the reference plane is

T =¥ 'swbcosd +¥'sné s r 2cos

where (4, $) is the direction of radiation and (X', Y', Z') is the source
point.

Assume that the field incident on the aperture from the negative Z axis is
linearly polarized with the electric field aligned with the X axis, then the
far field electric field is

Eg = /g(,+ Cos @) cos ¢/Ea(x v) e PO osg ¥ 5o )

ZAr dxa}V
Eg=" '_§L—~ (1+ Cosejswd//g(x VJ@J%?(Z’SN 0cosd £y/smdsimg)

= dxé/
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Where E (X,Y) is the complex excitation of the aperture (amplitude and
phase) and it is assumed Z' = 0. The integration is over the aperture
surface, S. The terms (1 + Cos(Theta)), Cos(Phi), and Sin(Phi) can be
removed from the integrals because they are constant over the arguments
of the integrals. The principle plane patterns are

E, at 45 =0 (E Plane)
E¢ at 96 = 90 (H Plane)

If we ignore the sign change in the patterns going from Eg to E¢bwe find the
general principle plane far field electric field as

_ eryygf‘ J672?( /B (X smbcosp fﬁ’&ﬂvasuuy
E(o,¢) o (I+c059)5 7 e QM/{,

Using this electric field, we find the magnetic field from /H[ = /EI/7 .
The radiation intensity is found from

z

_ (4 cos6) BSmEcost 4y s b5, b *
Since U(a,¢)=/E(e,¢)12/7

GAIN

We can find the gain of the aperture if we can find the total power radiated
by the aperture. The total power can be found by integrating the far field
pattern over a large sphere. This is a problem because the far field pattern
given above is not accurate everywhere because of the Huygens source approx-
imation. In fact we can use one of the approximations to find the total
power radiated. We have assumed that the electric and magnetic fields are
related by the characteristic impedance of free space in the aperture. The
total power is the integral of the Poynting vector magnitude over the

aperture.
) z
P = *7—-/5]/5‘,(,\', v)/ Jxéz

From this the directivity is found from
477 U ay
P

r
Substituting the equation for the radiation intensity, we find the directivity.

2 J'/B(;k/.s//vé cos @+ ¥swé smgp) 2
7 (1+ Cos 8) /,/;/E"(’(I Y) e <g,(/),}MK

AT [//Eo(x, V)lhq/xéx

Direc r/u/}¢/ =

p/eemw;y =
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Chapter 8 Horn Antennas

If the maximum radiation intensity is at € = 0, then the directivity is
simplified because Sin@ —>0 and the exponential term is removed.

47 /fgéi(x, 7) dxd//l
Directivity = % [glEo(X, Y)/LC/XQj/

Suppose EO(X,Y) = Constant, then the integral reduces to the area of the
aperture.

z
‘4”7'/555/4/ 47 A
Directivity = ;2 ——z. =
irectivity A2 éi?A AE
This is the expression for the Directivity (Gain) of a large uniformly fed
aperture given on page 48. Since most large aperture radiators have small

I°R and reflection losses, directivity is taken for gain (such as horms).

PATTERN MULTIPLICATION

The aperture can be considered a continuous array of continuous arrays
under special conditions. If the electric field excitation of the aperture,
E (X,Y), can be divided into the product of functions each of which is a

function of only X or Y and the integral limits are constant X and Y
coordinates, then the aperture can be analyzed as an array of arrays.

E,(X,Y) = E;(X) Ey(Y)
The integral for the radiation intensity becomes:
T ’ / ] ’
+ Cos B, B Sm e cosg) JBY SO swb T
a(6)¢)=g~———-°)//5,(x)é”g dx E;(y)eﬁ J//
4,\‘7
The integral is separable.

RECTANGULAR HORN

We will use the Huygens source aperture method to analyze the radiation from
rectangular horns fed from a rectangular waveguide in the dominate TEIO mode.
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Chapter 8 Horn Antennas

It is assumed that the horn tapers slowly from the waveguide to the mouth

of the horn so that the incident field has the same mode pattern as the mode
in the waveguide. The transition from the straight guide to the flared
horn must generate higher order modes to satisfy the boundary conditions

but we will assume that these are insignificant.

Assuming the electric field in the waveguide is polarized in the X direction,
then the amplitudes in the two planes are:

E Plane Constant
H Plane Cos (—%)

We have the amplitude of the excitation electric field but not the phase,
Consider the E plane through the center of the horn. If we project the two

= | ¥

slant sides of the horn back into the feeding waveguide, they will intersect.
The radius from this intersection to the outer edge is called the E Plane
radius of the horn, R . The waves traveling to the outside of the horn
must travel farther to the aperture plane than those traveling to the center
of the horn aperture. The distance is a quadratic function of the coordin-
ate X, 5

R e YO =S

We can expand the square root in a Taylor series about X = 0,

V/‘ﬁf o~ /..Xz

&éz zk%‘

s =x
2R
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Chapter 8 Horn Antennas

If we normalize § by dividing by the wavelength and let X = H/2, then 8
is called the maximum aperture phase deviation in wavelengths

S = __——I-—I.z——
e 8 ReA

The H Plane flare leads to a similiar phase deviation. The electric field
in the aperture plane is
T

W.y -—JB ’77Pl
Eo(x/Y) = (05 (*-v—v—") e /\/?e e_‘/—/wm

The integrand of the field integral is separable and limits of the integral
are over constant X and Y coordinates; therefore the integral is separable
into the product of two integrals.

A
wto ) = (<3 [y ey Ry owe g jmrt
7 4/‘17 w e /‘Rm d/ .
“Wh
K g svecosg >
+* e’ A eJ"’ee Of(/
e

If we take the special cases of E plane (# = 0) and H plane (# = 900),
we can plot universal radiation patterns for these two planes. The E and H
plane universal radiation patterns for the TE. . mode rectangular horn are
plotted on pages 220 and 221. S, the maximum phase deviation of the aperture
in wavelengths, is the parameter of these curves, The factor (1 + Cos(®))/2
has been removed. The abscissa of the E plane universal pattern is
H Sine® , where H is the E plane height of the horn.

A .
Similiarly, the abscissa of the H plane universal pattern is ELﬁ%?JZ_ ’
where W is the H plane width of the horn. The ordinate of each plot is
field strength or the electric field. The 3 dB point corresponds to
0.707 on the chart. These charts can be used to find the pattern of the
horn.

The pattern in the E plane is that of a uniformly fed continuous array with

a quadratic phase error. For large horns in terms of wavelengths, the

(L + Cos(8))/2 term can be ignored, but for smaller apertures this term must
be multiplied by the value from the chart. The H plane pattern is that of

a continuous array with a Cosine aperture illumination. Notice that the H

plane pattern has smaller sidelobes than the E plane pattern. Also the

H plane radius can be reduced further before the pattern splits on boresight

as the E plane pattern does at Se = 0.6 .

Let us use an actual horn to demonstrate the use of these curves. The follow-
ing are the dimensions of the horn.

219
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Chapter 8 Horn Antennas

Bl

P

, 688 é N 8.38
4 : = E Plane

11.38
H Plane
/.38 X =
1;;63

/

We can find the E plane radius by similiar iangles.

Re 4,19
_— = E; = /8,93
738 3846

The H plane radius is found from similiar triangles like the E plane.

Re 165 5} 1
‘ 569

6
W J

Ry
. Sév _
/7.63 = K = 2006
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Chapter 8 Horn Antennas

Suppose we want to analyze this horn at 8 GHz. The wavelength is found
from

,A - 11.80285 x 109 inches/sec

) 1.475 inches
8 x 10” cycles/sec

Using this wavelength, we can find the maximum phase deviation in the E and

H planes.
_ K™ (8.38)"
c_ = 013/
BARe 8 (1.475)18.93
2 2z

8ARy  8(.475) 20.06

These maximum phase deviations in wavelengths indicates which curves are to
be used on the universal radiation pattern curves. We can construct the
following table with the E and H plane patterns.

W , Rel. Field
2] ~ Sin 8 Strength (1 + CosB)/2 Pattern
5 .673 .795 .998 -2,
10 1.339 .5 .992 -6.1
15 1.996 .27 .983 -11.5
20 2.64 .15 .970 -16.74
E Plane
H Rel. Field
o 5~ Sin& Strength (1 + Cos@)/2 Pattern
5 .495 .703 . 998 -3.1
10 .986 L4l .992 -7.8
15 1.47 .36 .983 -9.0
20 1.94 .14 .97 -17.3"
25 2.4 .19 .953 -14.9
30 2.84 .085 .933 =22,

We can use.the universal radiation patterns to find the 3 dB beamwidths of
the horn. The half beamwidth is about 5 degrees, so the (L + Cos ¢ )/2
factor is about 0.998. The 3 dB beamwidth is 0,7071 which when divided by
the (1 + Cos 8)/2 fagior is 0.708. In the H plane the factor W/A Sin 8
equals 0.87; @ = Sin ~(0.87 A /W) = 8.5. The half power beamwidth is 17.1°
The E plane factor is 0.49; &4 = 4,95°, The half power beamwidth is 9.9°,
When we use Kraus's formula for directivity found on page 35, we get an
estimate of the directivity (gain) of the horn.

Dreecrivity = 4/253 4,253 23.9 48

O Oy C/Z/) (9.9)
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Chapter 8 Horn Antennas

The directivity of the rectangular horn can be found from the equation on

page 216 for an aperture.

When the maximum of the pattern occurs at @ = 0,
Schelkunoff has solved this integral and finds the directivity.

pirectivity = ST %h RBe ((c(u) - cOv))H(S(u) - SO E2(2) + s2(z))
WH

where u = —': JA Ry . __“_/_)
w ‘L*kz o
v = —"(4/\&4 _ ‘W ) Z T —
T w W Ru VZA R,
and X 2
= 7t
c(x) [Cos A ) d¢
X Fresnel Integrals
S(x) /5 —
(52 ) de

If the horn is flared only in the E plane, then the directivity is

64 W R
g = €
€ 77 A H

( cz) + 52(2))

Similiarly, if the horn is flared only in the H plane, the directivity is

e = THR (@ -cen?+ (5@ - seN)

AW

These functions are plotted on pages 225 through 228.
for horns flared in one direction only.
of a horn flared in both directions.

g g
T (tnA\ ( i; )

& 7 32 H’

We will use these curves to find the gain of our example horn.
the parameters of the horn,

W= 11.38 (H plane width)

H= 8.38 (E plane height)

Rh = 20,06 (H plane slant length)

Re = 18.93 (E plane slant length)
Frequency = 8 GHz A = 1,475 inches

W/x =17.71 Rh//\ = 13.6 H/A = 5.68 Re//\
(A%) = 40 g
- 02-. /\
w (59) = 48.¢6
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We can use these to find the gain

These are

= 12.8
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Chapter 8 Horn Antennas

g=52(402)(48.6) = 11.8 — 22.8 48

Notice the difference between this and the value given by Kraus's method
using beamwidths. The nomograph on page 39 using the conical beam method
gives the gain at 22,8 dB for the beamwidths of 9.9 and 17.1 degrees. The
manufacturer also lists the gain as 22.8 dB at this frequency. This horn
is used as a gain standard against which other antennas are measured.

OPTIMUM RECTANGULAR HORN

There is one particular horn which has come to be called the optimum horn.

It has the following properties: 1) Minimum E plane radius or H plane radius,
and 2) equal E and H plane beamwidths. If we take the curve on page 227
and draw a line through the points of maximum gain for a given Re’ then we
find that the points of maximum gain for all R_ line up approximately on the
same line. At this point the distance R_ will be minimized for a given gain.
We can find the maximum aperture phase deviation in wavelengths for this
aperture in the E plane.

Re =12) H=5)\ Se = 73 Re =3 (12) = 0.26

In the H plane the maximum aperture phase deviation in wavelengths is found
from the similiar line drawn on the curve on page 228.

2 2
= = = _W = (5.05"_
R, 8A W= 5,05\ 5, 5 R, 8 (3) 0.40

We can use the universal radiation patterns to find the ratio of the height
to the width which gives equal E and H plane beamwidths. If we use these
values of S, then the absc¢issas at 0.707 ordinate are:

H W
=8inéd = 0.475 —Sin @ = 0.68
A A

H _

7P = 0.7

The gain for an optimum sectoral horn is a linear function of the width or
height of the horn. If we pick the ratio of the height to the width of the
horn to be 0.7, we can find the gain and multiplication factors for the design.
Pick W= 54.

ﬁ%— g, = 39.3 on optimum line

The height will be (0.7) 5 = 3.5 to give an equal beamwidth; the gain at the
optimum line in the E plane is given on the graph.

A .
W e 8
The gain of the horn is: m /A (‘A _
32 (w g) (3 gh)'1°8

Since the gain is found as the product of two factors, each width will be a
linear function of the square root of the gain.

Kﬁ 108 = 5 Kﬁ = 0.481
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Kh‘1108 = 3.5 Kh = 0.337

The optimum horn may be found from these equations:

W/x = 0.481 [G
H/A = 0.337 G
2 2
The slant lengths are found as Rh[A = éﬂéat%—- & Re[A = ﬁ%ig_%
h e
2
_ (0.481 [g )" _
R/A = = 0.4 0.0723 G
2,
_ (0.337 J6 )" _
R /A 5700726 0.0546 G

Where G is the power gain as a ratio: G = 10(G (dB)/10)

Suppose we want to design a horn with 22 dB gain.

¢ = 10(22/10) 158.5

W/A = 0.481 [ 158.5 = 6.055
H/) =0.337 J158.5 = 4.242
R /) = 0.0546 (158.5) = 8.65
Rh/A = 0.0723 (158.5) = 11.460

The center frequency of the horn will be at 10 GHz and the horn will be fed
from WR-90 waveguide which has dimensions 0.900 x 0,400 inches.

A = 1,18 inches
W= 7.145 H= 5,005
Rh = 13,523 R.e = 10.212

Looking at the mouth of the horn, it looks like the figure below.

pnit——— 7 14{5 —————— =
5.005 0{9
i - A ~1 H Plane
I
E Plane
230

Fundamentals of Antenna Design by Thomas Milligan Copyright 1981



Chapter 8 Horn Antennas

We need to find the length of the sides to make the horn.

Above is a cross sectional view through the E plane of the horn.

B2 = 1P+ (- 0)%/4
From similiar triangles we find:

Re . _m

D H-bD

e

We can substitute this expression in the equation above and solve for the
axial length of the horn in the E plane.

(L) = r (-0

Similiarly,

We can use these equations to find the axial lengths in both planes.

= 5005 - 4 z —
Le = oo JOs22)™ ~ (5.005)7 = 9,709

LH = Z/4; ",9
7.145

/(13,52.3)7'-(7'145)% = /400

Because the lengths are different, we will have a problem building the horn.
The H plane must start flaring before the E plane. It would be nice to
restrict the horn design to have equal axial lengths so that the horn will
join the waveguide at a single plane, We can solve for the slant radius
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Fundamentals of Antenna Design by Thomas Milligan Copyright 1981



Chapter 8 Horn Antennas

in the H plane in terms of the axial length.

w’
E = e— kS
7 woa n + (w-a)/g
With axial length

L=i:é. 2 2
H Jfﬁ% ~ H/q

I1f we solve for Rh then
’

kz = 745

107)° 145 - 0.9)%, = /017
P [ @109 + (7 )/4

Since we did not use the optimum design, the gain of the horn may not be the
required gain. We will need to calculate the gain of this horn. The E
plane gain has not changed when we change the H plane slant radius.

H/) = 4.242 R/) = 8.654

From the plot on page 227, we find the gain factor for the E plane.

A =
T Be 33.9

In the H plane we use the plot on page 228,

W/A = 6.055 Rh[A = 1:18 = 9,336

This point is to the right of the optimum line for an H plane sectorial horn.

The gain of the horn is T A A =
7 Gred(4 gh) 139.1

The gain has fallen below the required 158.5 (22 dB)., We need to design

a horn with higher gain so that when we apply the restriction on the H plane
slant radius to give equal E and H plane axial lengths, the gain will be 22 dB.
We will increase the gain by the ratio of the last designed gain to the
present gain times the required gain.

g= 8.8y g,

Where g 1is the new design gain, g 1is the required gain, g, is the last
design gain, and g_is the actual gain of the present design. We are
setting up an iteration process, The new design gain is

9= (158,5)(158.5)/135,1 = /81,5
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Using this design gain, we can find the dimensions of the horn,

Ww/) = .481 (181.5 = 6.480 W = 7.646 inches
H/A = .337 {18l.5 = 4,540 H = 5.357
R/A = .0546 (181.5) = 9.910 R, = 11.69

We find the axial length using these dimensions and the H plane slant radius.

= H-b
FT =R - H% = 10.533 m.

=W
Ky W-a /L1 + (w-a)y = /2,535

Ra/p = 10,623

We can find the gain of this horn from the plots on page 227 and 228.

A - A
—nge = 36.3 T?},‘ = 44:4
o = /58,2

This is quite close to the required gain of 158.5 (less than 0.01 dB) and
we have our final design.

W= 7.646 H = 5.357 Rh = 12.535 Re = 11.694
Axial length = 10,533

Let us check how closely the antenna comes to having equal beamwidths.

Se™ LY w*
€ 8ReA 5"'8@,,\ =, 49
Hoswg = 475 W.os.8 = ,775
A
20z = [2° 28, = 13.7°

Because we forced the horn to join the waveguide in a single plane we have
removed the restriction that the antenna have equal 3 dB beamwidths,
although they are still close.

Let us try keeping the axial length of the H plane and forcing the E plane
slant radius to give this length. This will give us another design.

233

Fundamentals of Antenna Design by Thomas Milligan Copyright 1981



Chapter 8 Horn Antennas

_ H
Ee B B, \/7‘1“ (H 05)74-

Re= -—--—.._..._..5-'005 . / z X
57005..‘4_ <”'4) * (5.' aos '—'4)/4- = (2. 64‘ INeHES

We can find the gain of this horn using the plots on pages 227 and 228.

WA = 6,055 HA = 4.242
uf = 11460 R = 10,7/
A A
< ) = 474 (ng)‘ 37
Ga = 172.2
The new design gain is 9 = (158.5)° s
172, =
Now we can design a horn with this gain.
WA = .48 (1as5,9 = 5 8 W= 6.856
Hfy = 1337 [,125. 9 = 4.070 H = 4,803
Ruf = .0723(1459) = /10.548 Ry = 12,447
L= Wy\;a Jrzr — wyg = 10.395

Re= g Vs by = 157
We can find the gain of this horn.
Ru/ = 10.548
wh = 5.8l

A pe/,\ = 7,812— /\
(779")= 456 H/A = 4.070 (79‘“’ = 35.4

%= (7 9)(4

9 =3 (P V?e) - /15848

This horn also has the required gain. We can calculate the beamwidths of

the antenna.

He -
Sp =

8 R B8R, A

Se =
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H =, 46 N S 8, =
3 Siv B¢ g v O .69
20 = 13° 26, = /13.4°

Let us compare the two designs.

Design 1 Design 2

Width ) 7.646 6.856
Height H 5.357 4,803
Axial Length L 10.623 10.395
E Plane Slant Re 11.69% 11,591
H Plane Slant Ry 12,535 12.447
E Plane Beamwidth 12 13

H Plane Beamwidth 13.7 13.6

It appears that the second design is more optimum. The dimensions of the

side plates are:

6.85‘r———ﬁ-*

’LL_(. (H—b)’%l— = /0,626

These dimensions do not allow for the overlap needed to solder the sides of
the horn together.
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It is possible to design rectangular horns with different beamwidths in
the E and H planes. Since there are extra parameters available, this
horn has great possibilities to satisfy a variety of requirements,

For an example let us design a horn with an 80° ten dB beamwidth. The
obliquity factor (1 + Cos & )/2 = 0.883. The 10 dB level én the universal
radiation pattern is 0.358 (0.316/0.883). Let us use Sy, = 0.40,

W/A Sin® = 1.35 W/A = 1.35/Sin6 = 2.1

R, = i/ Y2/ (8 s.) = 1.378

Let us pick a frequency of 10 GHz and WR-90 waveguide again. A= 1,18 in.

W= 2.478 R, = 1.626 L = W—B’,—E jRﬁ - w24 = .670

Assume that Se 0.2 which we can verify when the design is complete.

H/A = ,775/Sin 6 = 1.206 H=1.423
R = H "2 2 _
e i-5b \/L + (H-b)7/4 Re = 1,172
Now we can check the value of Se
2
Se = 1.423 = ,183 Which is close to the assumed
8 ) 1.172 value,
The final design is:
W= 2.478 H=1.423 Rh =1.626 R = 1.172
e

Axial Length = ,670
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TE and TM Modes

On page 203 and following, we were able to find a solution for the dominant
mode waveguide fields by considering two waves traveling at an angle to a
reflecting boundary and satisfying the boundary conditions. The electric
field was parallel to the plane of reflection. The solution that was found
is called transverse electric or the TE mode solution. There is no electric
field in the direction of propagation of the wave, but there is a magnetic
field in the direction of propagation. In general, any field problem can

be solved as a sum of TE and TM (Transverse Magnetic) modes. We will use

the vector potentials bto derive TE and TM mode solutions.

Let us take Z as the direction of propagation of the mode. We can derive
a TE mode solution using the following electric vector potential.

F oy

Where ¥ is a scalar function. The fields can be found from the potential
by: _ _ . _ —_
5: —-VXF: #_.: —-‘/‘GJGF‘/“‘ V(V'F)

- ’ _ _ J oM

Since E 1is a curl of the vector F and F 1is only in the Z direction,
the electric field is orthogonal to F and the direction of propagation.

In rectangular coordinates the above equations for the fields expand to:

QY / &151/
£ = — = = — _ 2T
§ o T jumaxay A
v - ’gj Hy = —— = TE
x /DM Sydg (H Mode)
E = 0 (a

_ .
Hﬁ - vfe&“ (/éigl #LIZ;‘))¢

These are also called H modes because the magnetic field is in the direction
of propagation.

We can find a TM mode solution by using a magnetic vector potential which
is in the direction of propagation.

P —

A= A,

Where 4/ is a scalar function. The fields from this potential are found
from:

# = VXA E= - wuA + viv.4)
JHE
The magnetic field will.be zero in the direction of the magnetic potential

which is in the direction of propagation. The TM mode can be expanded
in rectangular coordinates to give.

i\
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- ! oY P _ 2m
Ex Jwe axéz He = 5}‘/%’ =5
QY _
Ey = = ! Hy = ™
/o Jwe % °3 4 oz (E Mode)

EE:/Z/_G (%Z“"/QZ)}” He =0

This mode is called the E mode because the electric field is in the direction
of propagation.

We will be seeking solutions in source free regions. From pages 121 and 174
we find the differential equations of the vector potentials in the source

free regions. VLZ + /SL/T =0
V'F+ BF =0

—

Since A = é’z ¢ and F = azsll ,» the vector differential equation reduces to
V¥ +BY =0

This is called the Helmholtz equation, Note at this point that the scalar
function, ¥ , 1is not necessarily the same function for H modes (TE) and

E modes (TM). The same partial differential equation is for both TE and
TM modes. We will find solution sets for this equation and apply the
boundary conditions to get the solutions for each type of mode. 1In rect-
angular coordinates the Helmholtz equation is

W, Y oY Ly
ox? a},z 7+ 755;‘ + /3 ﬁé 0

We will use the method of separation of variables with a solution of the
form

Y = x@ ) 2(2)

where X(x), Y(y), and Z(z) are functions of the coordinates x, y, z only,
If we substitute this into the equation and divide by yﬁ , then the equation

becomes
2 .2 2
1 dX(x) + 1 d7Y(y) + 1 d7Z(=z) + /32 =0
X 2 Y 2 Z 2
dx dy dz

Since each term is a function of only one coordinate, then each term is equal
to a constant. These constants are called the separation constants. This
reduces the problem to three ordinary differential equations.
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| EZZV(}/) - 2 ! 422(2) _ 2

| d7Xx) = — B = _
we = - Px (y) dy?* 7 (z) d=2*% Pz
X (X} C('XL /5 VY) )/ Z )
Where /Bx, B.» and ,  are the separation constants. From the original
Helmholtz equgtion, we obtain an equation between the constants.
2 2 2 2
+ + =
B, "B B, TF

The three equations are identical in form.
X
Idx*

The solution to this equation is called a harmonic function which is denoted
h(ﬁxx). The set of harmonic functions is

{SW,@X) Cos G X eJ/B’“Z) e‘J/B*ZJZ

The trigonometric functions are standing waves and the exponential functions
are traveling waves. The solution of the Helmholtz equation.is

b= h(B ) hBy) h(se2)

RECTANGULAR WAVEGUIDE

# ﬁf)((x} =0

o

AN AN N .

77 7T T 77
77777

D N N . . W W N = X

a ]
|
Z
We will use the Helmholtz equation solution to find all possible modes of

the rectangular waveguide. We will need traveling waves in the Z direction
and standing waves in the X and Y directions.

- -2
y - Z)’Cosﬂ(x cos fyy ) [ evPe
:DM//E; ¥ 35“/,55/}/ eaJyﬁé-E
The solution is any linear combination of the functions in each column.
Each second order differential equation has two arbitrary constants which are
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determined by the boundary conditions.

The TE modes must have zero tangential electric fields at the walls,

o Cos ~S/n .
Ex.:.-—_._(/{.:_/g)/fs /g(f[ /8)'}/ 6’_//%3
I~ Bx X Cos/g//

At y=0, E_=0 which is satisfied if Yo cos g,y
_ - . . . o fd . = nir
At y=b E_=0 which is satisfied if /5} 5

Where n is an integer. The tangential electric field at x =0 and x = a

is
£ = 2 _ SW [Bx X nir VB ®
34 3% Ax ;CGS,BX/T Qs -y €

rnt

The zero tangential fields are satisfied if fxcosfxgna Px T
where m 1is an integer. The electric vector potential in the Z d1rection

(TE mode) becomes
— JOE§52;
¢/n = Cos 27 ){ Cos 21 )/ e

from which the TE mode field solution is found using the equations above.

The TM mode potential function is found by satisfying the boundary conditions.
The electric field in the Z direction is found from

YY)

For this to be zero at the walls the following conditions must hold.

¢’TM

0 at x=0and y = 0, This is true if

7M -
{ﬂ: SivpxX s By e\//‘g*é
nim
For ™ 0 at x=a and y = b, then = o and By = p
a Y

where m and n are integers. The magnetic vector potential for TM mode

solutions is -
—_ ﬁ”” n7r -, B

As an exercise it should be shown that this potential also satisfies the
boundary conditions on Ex and Ey at the walls,

Both the TE and ™ modes satisfy the same equation for the propagation
constant
2z

/BXL+/3}}_/_/3; = /5
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2 z 2
p= B -(E) - (2

The mode can propagate if the wavelength is less than the cut off wavelength
for that mode in the waveguide. The cut off wavelength is found from

BE = (4T) = (2T)" 4 (°T :

< Ae a b

The waveguide wavelength is found by solving the propagation equation for
wavelength in the Z direction.

Ao 2
A = <A ) =
] “m
[1-04,) CE e )
/\o = Free Space Wavelength

Note that the TE n and Tan modes have the same cut off frequencies for a
given m and n.

The fields of the TE modes in rectangular waveguide are found from the
electric vector potential in the Z direction.

Ex = ATEe cos (MTx) s (°F) e /B3

Ey = - mZE" S (%’TX) cos (ﬂgf-y) e.“/f%}

-/ /35
g = 25T s (5Ta) cos(5y) €
X

a/(

_ P B nT (o5 (M) S~ (%"T/

TE Mode

_ /2

#/ wM b X

b= I (B p) e

These equations are for a wave traveling in the positive Z direction.

(r_z’;a) (os(ig/) e-\//%ﬁ

Similiarly we find the TM mode fields in the rectangular waveguide from the
magnetic vector potential in the Z direction.

E,= M g Cos (f‘al"x) S (ﬁf}/) B

@

nﬂ'E

E/ = __g, 0 SN (_’%‘1-7,1') coS (fg}/) é‘/"g'a%

TM Mode

£y = —é"“ (zgl"/g;)& ‘2‘7/—1} SN (%77_)’) f—/’g%%
JSHE
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nil m T Nnir -/ /a2
He = DE, sinfmT5) cos (8F,) e~/r%

b
1/' 2
//}/ = ’"-.-,217—50 cos (%—VX) S/u(f’blr)/) e /gah

We can use these equations to find the Z directed impedance of the wave
in the waveguide.

Ex EX
(Zo)mn - " T H
y X
) TE - < = ,ff_)_ , —
o’mn /5; B s (11/292»
™ _ /34 y iy
(Zo)mn - o & = £ f/ - ((‘/fl

) €
Substituting /5’ = 60;/14€?) the Z directed wave impedances become

EA A — G = IV —CA)"

As the cut off frequency is approached, the TE mode wave impedance approaches
infinity and the TM mode wave impedance approaches zero. For both cases

for frequencies much greater than the cut off frequency, the wave impedance
approaches that of free space. In terms of waves reflecting off the walls

we find that the waves traveling in the waveguide reflect off the walls at greater
distances. Below cut:off the TE mode wave impedance is inductive and the

TM mode impedance is capacitive. Obstacles in waveguides are either

inductive or capacitive depending on whether higher order TE modes or TM

modes which are generated to satisfy the boundary conditions have the most

energy.

We can use the equations of the electric fields to find the patterns of a
horn excited in these modes by using the Huygens source approximation. On
pages 243 through 248 are patterns of 2 wavelength square aperture horms
excited in the first few rectangular modes, When designing horns, the
higher order modes can be generated whenever the dimensions will support
them and obstacles excite them. The extra modes can be detected from the
patterns. Of course, real horn patterns will be a combination of modes.

On. page 249 and 250 are the E and H plane patterns of a horn with two
modes, TE0 and TE__. This horn has the same dimensions as the horn
patterns on pages 283 and 244, Notice that the pattern electric fields
add. At boresight the pattern is just the TE., mode. The TE., mode
changes sign by 180 degrees as the pattern passes through a null at bore. -
sight, The two patterns add on the left side and substract on the right

242

Fundamentals of Antenna Design by Thomas Milligan ‘ Copyright 1981



Chapter 8 Horn Antennas
‘TE-01 MOOE

Solid - Theta Component . ‘ >

S —_— .
. i
_ Dash - Phi Component == ——=x
. : : —_——
—
1 MoDg

o o
Fundamentals of Antenna DeSign by Thomas Milligan ' Copyright 1981



/
Chapter 8 Horn Antennas
v TE-D2 MODE

Solid - Theta Component .

- Dash --- Phi Component . ___ | —= 4 = =

Fundamentals of Antenna Design by Phamas Milligan | Copyright 1981 |



Chapter 8 Horn Antennas

} » 0 dB Response Everywhere f

X
245 |

Fund‘amentals of Antenna Desi gn . - by Thomas Milligan ) Copjri ght 1981



Chapter 8 Horn Antennas

Fundamentals of Antenna Design ‘ by Thomas Milligan " _ Copyright 1981



Chapter 8 Horn Antennas

| Solid - Theta Component .

"Dash - Phi  Componeht T

247

Fundamentals of Antenna Design’ by Thdfhas Milligan Copyright 1981 -
Lo t . : : ' '



Chaptér 8 Horn Antennas

AZIMUTH CcuT
PHI = 30,0

. Solid - Theta Cbmp.onent

vw,.Dash - Phi Component

W, _ i,_ |
Fundamentals of Antenna Desigri by Thomas\ni'lrigan"f T . Copyright 1981



Chapter 8 Horn Antennas

AN

E Plane

TE-01 AND TE-02 MODES 30 DEG

AZIMUTH CUT

O e B

i s B

B o

=

-

249

Polar Chart No. 127D
SCIENTIFIC-ATLANTA, INC.

\,
\

N

Copyright 1981

by Thomas Milligan

ATLANTA, GEORGIA

Fundamentals of Antenna Design

/

/



Chapter 8 Horn Antennas

TE-01

330,
30
320°
40
3{p°
50°
300° N
607
N
290°
70°
! N
280° S
80°
] . ] —] T
° I —7 ]
zggo 0 5 i0] —-15==—=20
Sofeszeesa—ce
260° 2
100°
\
250° ¢
110° 2
P
240°XCXC
120
230° %
130
220°
140°
210
150°

/
/

Polar Chart No. 127D
SCIENTIFIC-ATLANTA, INC.
ATLANTA, GEORGIA

Fundamentals of Antenna Design

350°

<
340° 10
202

F25N——=30 {351

H Plane

AND TE-02 MODES 30 DEG

10

L]

=
-

35

1

L/

200°
160 190°
170

250

35—

350°

170°
190

by Thomas Milligan

340°

AZIMUTH CUT

o

30
230°

PHI = 30. 0

40°
320°

I
e ' - ] S0 °
25 20. 15 10 5 Y S
o o e e . T4 270
e e ==
- —+
——— ]
S Iy
SSS. f 100°
= i 260°
116°
N 250°
N\ "~
X ;
\ 7
120°
240°
130°
230°
140°
229°
150°
210°
160°
200°

Copyright 1981



Chapter 8 Horn Antennas

side of the pattern. The E plane pattern is unchanged from the E plane
pattern of the TE 1 mode horn because there is no E plane pattern response
of the TEO mode horn to horizontal or vertical polarization. If we did
not know be%ore hand that the TE., mode was in the horn, we could deter-
mine this from the fact the E plane pattern was unchanged from the TE
mode pattern, If the phase between the two modes was 270 degrees instead
of 90 degrees as was drawn, then the null in the H plane pattern would

occur on the left side of the pattern.

The is an interesting pattern because the response of the horn only
has a theta component. When mounted on a model tower positioner, it
will always be horizontally polarized.

BOX HORN

The box horn is an antenna which uses multimoding of the waveguide to an
advantage. The aperture efficiency of a rectangular horn is reduced
because the H planehas a cosine aperture distribution.

The maximum aperture efficiency is obtained with a uniform amplitude distri-
bution in the aperture. Suppose there is an aperture collecting energy

from a passing electromagnetic wave. The maximum energy which can be
collected from a small portion of the wave is the total energy passing in
that area. This corresponds to the peak amplitude response of thg aperture
less the losses in the antenna due to reflection mismatches and IR losses.
If the amplitude response of the aperture some where else is reduced from
that of the maximum response of the aperture, then that portion will collect
less energy from the passing uniform plane wave. The amplitude response

in that portion can be reduced by adding loss to that portion or reflecting
the energy and re-radiating it. The antenna with the best aperture effici-
ency reflects the least amount of energy when illuminated with a plane wave.
Hence a uniform aperture distribution will have the best aperture efficiency
when equally matched at the input as an aperture with a nonuniform aperture
distribution.

The box horn purposely introduces a discontinuity in the throat of the horn
which generates the TE 0 mode to satisfy the boundary conditions. The size
of the horn is increasea at the discontinuity to support the mode in
propagation. Below is the H plane cut of the horn.

1
. N _{
A
Al
BT~ - -
Ik
] 2
SONCNCN N NN
L
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The E plane aperture is the same size as the waveguide or is flared from
the input waveguide to prevent higher order modes in this plane. The width
of the aperture, A, is designed so that the TE,  and TEBO modes can
propagate but not the TE 0 mode, Because thereé is symmetry about the
center line of the disconélnuity, only odd order modes are generated. The
even order modes such as TE, . have odd mode symmetry across the center line
and are not excited. No propagating TM modes are generated because the
limited height of the horn cannot support the TM,. mode, the lowest order

mode. At the aperture the distribution is a sum of the TElO and TEBO modes,

- a, cos(TX) e V" L a. cos (3TX) oy/Bsol
E, () = a, co (A)e + ds os(A)e o

Both modes propagate from the discontinuity where they started in phase in
order to cancel the tangential electric fields on walls 1 and 2 in the
figure above. To totally cancel the field on these walls many higher
order modes had to be generated but only the TE,, B and TE_, modes are able
X 30 ,

to-propagate to the aperture. In the expression above B o s the wave-
guide propagation constant of the TE10 mode and /330 is tﬁe propagation
constant of the TE30 mode.
The amplitude distribution in the H plane will be more nearly uniform if
the phase betwyeen the two modes is 180 degrees. Since the two modes will
have different phase velocities depending on their respective cut off
frequencies, the length, L, may be designed to give a difference in phase
of 180 degrees. The length is given from these equations,

Ckio"/ﬁgo)ZL =7
Where /5,0—“‘-'~‘/?T7-T[,__ }{\I)ZJA

!
/530: ;lZ__F'[/__(’i—/A\-)]/z

From these relations we obtain an equation for the length L,

A2

L= A\ 3M 4
[r-&)]™ - [- ()]

The difference in amplitudes between the two modes depends on the ratio
of the input waveguide width to the aperture width. Silver, Microwave
Antenna Theory and Design , gives the following integral formula for the
ratio of the amplitudes in the two modes.
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A%
Cos (I7X ) Sy
43 / A ’ COS ( /d/

—_— = - A’/Z» A
4, Az

7x 7X :
Cos (’4/ Cos(A ) dx

..A/Z

This is plotted on page 254 versus the ratio of A'/A., It is found that
the maximum gain occurs for a,/a, = 0.35. The H plane beamwidth is
limited to greater than 36 degfees because for smaller beamwidths the
aperture A must be increased and the guide can then support the TE

. . . X . 50
mode which is generated in the step but remains non-propagating.

For an example let us design a box horn at 2.2 GHz with a 45 degree 10 dB
beamwidth. From a graph in Silver page 379, we find that the aperture
width is 2.13 wavelengths for a ratio of a,/a, = 0.35. The graph on

page 254 gives the ratio of the input wavegliide to the output aperture

size to give an amplitude ratio of 0.35 . The ratio of A'/A is about
0.67. The input waveguide should be then 1.43 wavelengths wide. A

guide this wide might be a problem because it will also support the TE

mode as well as the desired TE1 mode. One solution would be to flare the
waveguide after the original moge is launched in the waveguide. This would
give us some phase error in the aperture but it would be minor.

Because we have been only dealing in wavelengths, we can continue to do so
when finding the length of the box between the waveguide and the aperture.

4

Ass
, 2 %- 2z L
[/ - (275_737)_] - [' - C(i::ﬁ)j

L= 79/ A

~

Now we can substitute the frequency, find the wavelength, and the final
dimensions of the design.

)= 1-8028T xco
2.7 X101

= 5365

L: /0,2415’1
4 = 21314 = ]/.43
A = 1434 = 767

The H plane pattern of this design is plotted on page 255.
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CIRCULAR COORDINATES

When the boundaries are coincident with the cylindrical coordinates, it is
convenient to solve for the TE and TM modes in cylindrical coordinates. The
scalar Helmholtz equation in circular coordinates is found from the equation

on page 28. 2 2
__'___..a_..( M)+_I~l___‘a‘/jz+l& +/BZ¢=O
7o Pop/ TPt 38" 7 a3
Again we will use the method of separation of variables to solve this equation.
Ylp, #,2) = R(p) $H) Z (3)
When we substitute this in the equation and divide by yé , we get
L d (,dR| . _! 44 | 1+ 4%
PR dp (Fop prd  dgr | 2 d
The third term can be separated out because it is independent of £ and ¢
A z
Z gzt - T/

where /#_ is the Z directed propagation consta&t. We need to substitute
this back into the equation and multiply by e

P d/pdR), t d*F 2 gyt _
Rdf(F—$+§d¢l+(ﬁ /B;)‘O—O

+B =0

Now the second term is independent of £ and the only term with a <¢
dependence; it may be equated to a constant,

ALY

D gy

We will define the third separation constant as
< 2 z
B = P

Then the differential equation for the radial component becomes

L d . e
f&?(f‘%)—l—((ﬁﬂ’) ~nYR =0

:.—/72’

The solution to the Z(z) component will be a harmonic function which
since we pick 2z as the direction of propagation becomes,

e‘j/%? X @/'/595*

The differential equation of the ¢ component also has harmonic function
solutions which we will pick as standing waves.

swapb , CosS ng
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Chapter 8 Horn Antennas

If the whole circle is free of boundaries, then the equations of ¢ must
be continuous at 0 and 27 . This condition is satisfied only if the
separation constant n is an integer.

The R component differential equation is called the Bessel's equation
and has solutions called Bessel functions. These equations are denoted
in general as Zn( /%=/> ). The number of the Bessel function is dependent

on the separation constant of 56 .
Bessel functions
Jn(x) Standing Wave

Nn(x) or Yﬁ(x) Standing Wave (infinite at x = 0) Neumann Function

HIE]') (x) Traveling Wave similiar to e‘//sﬁlo Hankel Function

H§2>(x) Traveling Wave similiar to c?ff/ﬁ;fa Hankel Function

The Bessel function required will depend on the boundary conditions.

The first few Bessel functions J (x) are plotted on page 258. These are
the functions we will be using th€ most. They are tabulated functions like
sine and cosine.

CIRCULAR TE AND ™ MODES
We will derive TE and TM modes in cylindrical coordinates by using 2
directed vector potentials,
For TE mode: F = a_(
z
-— — 77 2 — V °—_.
E=-yxF #A=-jweF + ZV-F)
v M

From the equations on pages 27 and 28 the field equations are given in
cylindrical coordinates for TE modes by:

A .é_i[_/ o, = — J oY
fF o¢ r S UM dpoz
4 d

m
-
|

4 TE Mode

£, = 9Y Hy = L 2°%¥
¢ a]o ¢ UL O oz (H Mode)

- /L 32 2
E, =0 e = o (e + B

Similiarly the TM modes are derived from a Z directed magnetic vector
potential.
2V

wl

For TM modes: K =
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Chapter 8 Horn Antennas

The fields are found for the TM modes by the equations:

/7: V;(Z ' E:«\/’(,%A—_f V(V‘A)
JYE
When expanded these become:

_ - L
Ef’ Jwe a,oaz Hf f"

_ - -
Ep = Jwepos oz e =

E,= — o L BIY He = O

Jwe ' oz?

TM Modes
(E Modes)

e gk

CIRCULAR WAVEGUIDES

We will use the above equations to find the possible modes in the circular
waveguide. The direction of propagation is in the Z axis direction so we
have traveling waves in that direction with Bz as the waveguide propagation
constant. Since there is no bound on ¢ , the separation constant n will
be an integer. There is no loss in generality if only the cosine term is
used. The Neumann function N (/3. ) is infinite at £ = 0 so we must
eliminate it as a possible solu%ion. The vector potential function is

reduced to .
Y= T (fef) cosnd AR

TE MODES

For TE modes the tangential electric field must be zero at = a (the
radius of the waveguide). The tangential electric field is

Y4 -~ -

F —_— = J /6 Z

op = /r 2 (fef) Costn) €Y7

The electric field will be zero when Jé(}Q a) = 0, Given n there will
be an infinite number of zeros of the derivative of the Bessel function
which will determine the mode numbers. The first few zeros of the Bessel
function derivative, Jé(x% are given in the table below.

Eg

Zeros of J;(x)

Bessel Function order

p 0 1 2 3
1 3.832 1.841 3,054 4.201 .
2 7.016  5.331  6.706  8.015 np
3 10,173 8.536  9.969  11.346
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Chapter 8 Horn Antennas

This determines the radial separation constant.

Bed = Xnp

The propagation constant in the Z direction is found from the equation:
- 2 2 2 (Zn, z
p= - = p- ()

The cut off frequency is determined from the point where Bz = 0

Xn' 21 277a
i A =
A < X

From the table on page 259 we determine that the maximum cut off wavelength
occurs for n=1and p=1

TE11 Mode

TM MODES

Again for TM modes we must satisfy zero tangential electric field at the
boundary P = a. The TM mode has a Ez component given by

= L (2 :
This will be zero on the walls if 99 =0 at f =2 which implies
%(/3,,4):0

The radial separation constant,/Bf , Will be determined by the zeros of the
Bessel function. The following table is the first few zeros of the Bessel
function Jn(x).

Bessel Function Order

n
p\ 0 1 2 3
Zero 1 2.405 3.832 5.136 6.380
Number 2 5.520 7.016 8.417 9.761 X
3 8.654  10.173  11.620  13.015 np
fre = Xnp

The propagation constant in the Z direction is found from

> 2 2 2 2
/Be“/g'/ef_/g“(%f)
The cut off frequency is that point where /5; = 0,

A _ 2ra

=

™ I"/’
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Chapter 8 Horn Antennas

The lowest order TM mode in circular waveguide is the TM01 mode.

)\CTM = 2,612 a
01
“r™
01
The order of the circular waveguide modes is TE 12 TMOl’ TE 1° (TE01’ TMll)’
The TEO and TM, , modes have the same cut off frequency. Tﬁe TEll’ TMOl’ and
TE mo%es are usSeful for feeding waveguide horns.

01

The fields of the TE mode in circular waveguide are found from the Z

directed electric vector potential.
/

U, = T(Bp) cosng)e VPt g = Z2E

Using the equations on page 257, we find the waveguide fields.

&= & T(Fp) 0 eVrae
AT
Eg = S Ty (B, p) ¢S (nd)
-~ 5 \7,',/(/6‘&)0) Cos () Ve
a}u(
/l} = /3%A” :7; Cﬁ%ﬁf%)‘S'N
up

Ha = J.(;M (/32—/5;:):/; gg/,./o) cash

X
)

TE Mode

(/) ¢) @‘jﬁi'&

4) e 2

Similiarly, we can find the TM mode waveguide fields by using the Z direct-
ed magnetic vector potential function,
X
= r
o

= J( os(né
o = Tn(fep) Cos(nd) € -

This is the same potential function as the TE mode function. But the
separation constant, By , is equal to the zero of the Bessel function, Jn(x),
divided by the radius, a, of the waveguide. We can find the waveguide

fields by using the equations on page 259 for IM modes in circular coordin-

ates,

v faE
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Chapter 8 Horn Antennas

TM modes of circular waveguide

_ -2 &
(- BB Tpp)asae) €

, -, /822
E¢= r){g-l— J;'(/gf’o)S/u@¢)e\//3

C*—’éf’
-, B
- L B32) Tn(B.p) Costnd) €7
© & Jwe e /6*) 2
]
o .
= -\//EQ'E"
= /./f = —_ﬁ j;,(/aﬂo) Sw (né) €
_Bai
4 Cos (n¢ eV
Hy - ~ 8o 7 (Bep) )
/{% =0
We should also find the Z directed wave impedance of the circular wave-
guide.
E E
P ¢
(Z) = e = - ——
o‘np H¢ Hf

When we substitute from the equations above for the TE and TM modes, we find

@) TE - x4

o’np h /3;
™ /gz

(ZO)nP - we

These are the same equations that were found on page 242 for the rectangular
waveguide. The TE mode impedance becomes infinite as the cut off frequency
is approached and the TM wave impedance approaches zero. For very large
diameter waveguides the wave impedances approach that of free space.

CIRCULAR WAVEGUIDE HORNS

We use the equations for the fields in circular waveguides to find the patterns
of circular waveguide horns. Again as with rectangular horns we assume

that the flare angle of the horn is gradual enough that the higher modes
generated are insignificant at the aperture plane, The amplitude distri-
bution at the horn aperture is the same as the mode exciting it. But there
will be a quadratic phase taper in the aperture because the waves at the

edges of the aperture must travel further than those traveling to the center.
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Chapter 8 Horn Antennas

Let us first consider the geometry of the circular waveguide horn regard-
less of the mode in the waveguide.

The maximum phase error distance in the aperture is denoted S which is
given in terms of wavelengths in the figure above, Like the rectangular
waveguide horn, this is the dimensionless parameter. of various curves.

TE11 MODE

The TE.., mode is the dominant mode in circular waveguide., When we sub-
stituteé into the general field equations on page 261, we get the following
field equations.

P -2
Ep = Eo ;E'(Z%gv Sulﬁ e /®

f
' -/ B
EOXI /,Z,/,O J/Bé
Eg = Q'\T,(C/l)ca.sséé’

We will be using the Huygens source approximation in the aperture so these
are the only components we will need. The electric field on the aperture

is given below.
-

It will be convenient to rotate the horn so that ¢&== 0 is aligned with the
maximum electric field instead of ¢. = 90 degrees.

d =0
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Chapter 8 Horn Antennas

When we have rotated the horn by 90 degrees, the aperture electric field

becomes
- E"T X,
Ef’— “j;;" 1(—af} (05¢c 7[[;-:/84/

E¢c = ‘quzu J;I(Xif’) 5/N¢c

We have started using ¢$c for the cylindrical coordinate Phi component to
prevent confusion with ¢ of spherical coordinates. Most of the time
they are identical,

TRANSFORMATION BETIWEEN VECTORS IN CYLINDRICAL AND SPHERICAL COORDINATES

To perform this we will need the vector dot products between the various
components.

Ef’ 5? = Sin 0(Cos P Cos ﬂc + Sin P Sin ﬂc) = Sin O Cos(p - ﬂc)
a,- ag = Cos 6(Cos P Cos ﬂc + Sin P Sin bc) = Cos O Cos(p - ﬂc)
a,- 3 = Cos P Sin ﬂc - Sin P Cos Dc = - Sin(p - pc)

aﬂ'-ar = Sin 0(Sin P Cos ﬂc - Cos P Sin pc) = Sin O Sin(p - ﬂc)
ape 59 = Cos 0(Sin P Cos ﬂc - Cos P Sin Dc) = Cos © Sin(p - ﬂc)
—_ C =

. = + Sin i = -
az)c 3y Cos P Cos ﬂc Sin P Sin Dc Cos (P ¢c)
a.a = Cos © as- a; = - Sin © aé- a¢ =0
If ¢ = ¢C, then the products reduce to

af. a. = Sin 6 ag- ag = Cos O ac - a¢ =0
E.'é:O E‘a-:() ‘a-.-‘a- =

¢c r ¢c ° ¢c

a ea = Cos © de.a,= -8in 0 g .a, =20

z T Z (4] z

When integrating on an aperture, the vectors are not referenced to the same
point and ﬂc # 0. The vector magnitudes are found using these dot products.

=3 o» a, + a + a
Ur a_ (Uf> E U¢Ca¢c Uz az)

Ur = Uf Cos 08(Cos P Cos ¢c + Sin @ Sin ¢c)

+ U¢ Sin 0(Sin @ Cos ¢c - Cos § Sin ¢C) + Uz Cos ©

c

U9 = UF Cos 8(Cos P Cos ¢c + Sin @ Sin ¢c)

+ . _ . _ .

U¢CCOS 0(Sin ¢ Cos ¢c Cos @ Sin ¢c) Uz Sin ©
- . . Si + . .
U¢ Up (Cos P Sin 0C Sin @ Cos ﬂc) ch(Cos ® Cos ¢c + Sin @ Sin ¢c)
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Chapter 8 Horn Antennas

For completeness we must include the transformation of the components when
going from spherical coordinates to cylindrical coordinates.

U = Ur Sin 0(Cos § Cos ¢c + Sin @ Sin ¢c)

+ Ug Cos 9(Cos P Cos ¢c + Sin P Sin ¢c)

+ U¢(Cos ¢ Sin ¢C - Sin @ Cos ¢c)

U¢ = Ur Sin 0(Sin @ Cos ¢c - Cos @ Sin ¢c)
¢ + Ug Cos 0(Sin § Cos ¢c - Cos § Sin ¢c)
+ U¢(Cos.¢ Cos ¢c + Sin @ Sin ¢c)
U =UCos @ -1U, Sin ©
z r %)

Using the Huygens source method, we can find the radiation intensity from the
circular horn. There will be a constant factor in all the expressions for

the far field. }?
. —J r
e C
tet § - 487 (/#cesd
2AF

Then we can find the theta and phi components for the fields by using the
transformation relations between cylindrical and spherical coordinates.

T G
F/ (’-“’ J‘(l"’a)aa/) (cos§ Cosp, +Simd smgc)

- Eo X, I/({,_,’_f) Sude (sm @ Cos b, —sm & ccs;b))
a a

'J/\»e 7

The distance from a point on the aperture to the zero phase reference plane
defined by the direction ( 0, § ) is given as

‘)é }O eJﬁfS/A/éCOS(?‘ ﬁ)

}9 Sin O Cos(® - ¢c)
The zero phase reference plane is through the center of the aperture.

The other far field component is given by this integral.

f[[(%j;(%f)(os é (Co.s‘;t‘S/A/p'c — Sw %Cosﬁc)

/
- E:o Z,, J;/(’z_’;_f) S ¢< (Co_sﬁ CcoS ¢c -+ S/Alﬁ S/Uﬁ‘-)
@ a

¥ feJ)EfS/uQCOS(¢’¢c) E)-J'%g c//a 4¢c
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Chapter 8 Horn Antennas

Now we need to consider the principle plane patterns.
EPlane ©0 =0

When we substitute this into the integrals, they become a little more manageable.
T4 )
—_ xl Y Z ’ 4 2
E, = ;Eoffo(J,(Jg}cos¢c + _’a’fj,’(&g s,ugéc)

' N /A
@Bt et R e dd,

T,.a
= CF 41-’/)* 1P 1( X P)) S ¢ CosPe
Eg ?o[‘[(J,(__Ii_lo %PI(_%))/?Sc
R kS
J' S/MéCosﬁ - Z—_ﬁ
4((?/3/0 ¢ @V AR c/f)dygc
When the following integral is evaluated, we find that it is zero,

7 .
/]
[t &y 2o
o

fz,;v/ cos & equ«u¢0/¢ =0

This is the form of the integral for the @ component of the far field in
the E plane. Therefore @ is the cross polarization component in the

E plane and it is zero. We can also see this from the electric field
pattern in the aperture which is drawn on page 263. There is a symmetry
about the ¢c = 0 axis where the vertically directed electric fields are
matched across this line and equally spaced from the zero reference plane.

H Plane ¢ = T/2

Again when we substitute this value of @ into the integrals they are
simplified. The integral for the O component has the same form as the
integral of the § component in the E plane. It will be zero also because
of the integral over the ¢c variable. There is no cross polarization

response,

ar _a
Eg =;?5,0[_[(3;(&Af)@szdzc+%f77'(%f Smde)

,\L eJ/B,o SO SMI?SC

e 4 AR dﬂd¢c

By a suitable change of variables in the integrals, universal radiation
patterns can be generated for the circular horn in the TE.., mode. These are
plotted on pages 267 and 268 for the E and H planes, respectively. These
curves are of the same form as the curves on pages 220 and 221 for the
rectangular waveguide, Like those curves there is a dimensionless
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Chapter 8 Horn Antennas

parameter, S, which is the maximum aperture phase deviation in wavelengths.
The two curves are no longer independent as were the rectangular horn

curves, but have the same value for S, When values are taken off the curves
to find the pattern, the factor (1 + Cos 0)/2 must be multiplied by the
value to find the pattern. Also remember that field intensity is proportion-
al to voltage so the values off the curve must be squared to find the power
pattern (20 Log( )).

GAIN (DIRECTIVITY)

As usual with horns we will assume that gain equals directivity since the '
losses are very small if the horn is well matched.to the input connector.
The peak "of the gain occurs at © = 0. The first thing to calculate is the

total power in the aperture.
i _q

Power = %L[K(IEFIL + IE¢</"-)‘°4{044‘-’<

From the Huygens source approximation we have assumed that the ratio of the
electric to magnetic field is the same as in free space in the aperture.
When the fields are substituted into the integral,. the integral over the @
can be performed easily and a change of variable can be made to reduce

the integral to this form:

I__2
[A 2
Power = TEs [ ZCl) 77 (ki u o
7 6 u
This integral is most easily solved by numerical techniques. Now we must

find the far field at 0 = 0,
uar..a

= x Y+ XiP o (X %) JZE
Eolo) ?E".[/(‘T' (Bef) cos’de ¢ ZxL g0 (Kt )smbe) o7/ 9% 1 44,
(o]
"The integral over ¢c can be separated out of the integral.

/zcrraszsﬁ( db. = /Zuz¢<<{¢c =

[/} q

We can make the following substitutions in the integral variables to reduce
the integral to a dimensionless integral.

z
u=2L du= 9¢ s= &
a a 2AR

The integral for the field intensity at © = 0 is reduced to

2

/ .
Eol® = T§E [ (50010 + 2/ T (i) ™ ",
[

_ r? IEO(O),2

(

The maximum radiation intensity

The term 2 l‘;’(O)Iz = 1./ X 2
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Chapter 8 Horn Antennas

Using the maximum radiation intensity and the total power radiated, we can
find the directivity from the formula

41rUﬁax

P
r

Directivity =

When we substitute into this formula the maximum radiation intensity and
the power radiated, we get a formula for the directivity 6f the circular

horn in the TE11 mode. | st .
. l[(r,(y,’,u) F XU T (g w)e™ T gy |
0

2T 4

Directivity = ——i)

LT, T w ) de
o ""Zr_“ + /

The division of the two integrals only depends on S, the maximum aperture
phase deviation. If we take the logarithm of the expression, we find that
the gain (directivity) is proportional to the aperture size minus a gain
correction factor due to the phase taper across the aperture.

Gain (dB) = 20 Log( 27/7\""‘ ) - GF

The gain factor has been plotted on page 271. To find the gain of a circular
horn, we must calculate S and then find the corresponding gain correction
factor from the curve. This is substracted from 20 Log( circumference in
wavelengths).

OPTIMUM CIRCULAR HORN

For any required gain from the horn, there is a continuum of possible designs.
We can pick an S which will fix the ratio of the slant radius to the aperture
radius. Given 8, we find the gain correction factor from the curve. We

add this to the required gain, divide by 20 and take the antilog, and we

have the required aperture circumference in wavelengths. Then using S,

we find the slant radius,

Example: Design a circular horn with 20 dB gain at 5 GHz.

Pick S = .5 From the gain correction curve we find GF = 4.3 dB
2TA _ 10(24.3/20)

A
A _
X - 2,611

We have assumed that S = A2/(2).R) = 0.5
R=4%/@AS) = (2.6110)%/)
R/\ = 6.817

We have a horn with 20 dB of gain for any frequency; now we can sub-
stitute in the frequency (wavelength).
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Chapter 8 Horn Antennas

A= 11;%92§2 = 2,360 inches
Aperture Radius A = 6.163 Slant Radius R = 16,092

We can also pick S .45 which gives a gain correction factor = 3.6 dB.

Al = 2.409 R/) = 6.447
A = 5,687 R 15.22

Both horns in the example have the same gain and meet the design goal, but it
would appear that the second is better because it is smaller and cheaper

to build. If we design a horn with S very small, then the aperture size
will be the smallest. But R approaches infinity as S approaches zero.
It appears that there is an optimum design somewhere between S = .45 and

S =0. The solution lies in plotting a curve similiar to the curves on
pages 227 and 228 for the rectangular horn. On:. page 273 such a curve

has been calculated and plotted., We find that if the voltage gain is used
for the ordinate, then the points of minimum aperture for a given radial
length and maximum gain line up on a single line. This is the optimum
horn design line.

If we take the example and design a horn using this line we get the following
design.
2 AN = 4,416 R/A = 6.25

A

5.212 R = 14,753

This design corresponds to having S = 0,39 .

TM01 MODE HORN

The TMO is one of the useful overmoded circular waveguide modes. We will
derive %he pattern of this horn using the Huygens source approximation.
From page 262 the fields in the waveguide are given by

Eo= ~ Xo, Ba \7;/(;3%0) oV 2, = 2,405

we A
Eg =0 ,
/ 2 2 Z/ —.\//%%
E%:: J—_C—U—G_ (F _/8%)\75(%)@

— = ~ZOI / 5 ‘/53'_2‘
ho=o0 Hp= ~Z2T (lf)cV

One of the properties of the Bessel function is
— /7
T(x) = - T (%)

Using this, we can express the electric field in the aperture as
Ep= £, (&P)
a
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Chapter 8 Horn Antennas

The waveguide only has a radial component. The field pattern in the
aperture is given in the figure below.

TM01 Mode

The pattern will be the same if the antenna is rotated by any amount; therefore
all azimuth patterns will be the same. Let us find the A and P far field
components at § = 0. The O component is given by the following integral.

qQ .ur

- - E. — /X, J}BS/NGCa.s;é et
2o £5 | [ I(5f)cosbie TR g dbdp
o Ta
The ¢c integral can be integrated exactly in terms of Bessel functions.

27 u
/COS¢Q e’ Cosqfcq!g{c =/ 277 F ()

(o]
This reduces the integral by completing one of the two integrals.

aQ '”ﬁt
= jar E/“‘Zo' T, (Bpsmwe)e™ Ax
o=/ TEE | T (24L) T, (gpse) e dp
We will reduce the integral by making the following substitutions.

- - = RMa smb - -
= fa 6?7 adt U ,____jri__. S 7

These substitutions reduce the integral to a dimensionless integral.
/
- z —— —_—
Eo=~/’277-a' ;to/\/l (Xa/t)\z_(b(f)"te
[}

The solution of this integral is found by numerical techniques. We can use
this to find a universal radiation pattern curve which is given on page 275.
This is the same form as the other universal radiation curves. Because the
fields in the aperture are symmetrical, all the patterns will be the same
regardless of the value of @. As with all universal radiation curves the
ordinate is in terms of voltage and the aperture obliquity factor,

(1 + Cos 8 )/2, has been removed from the pattern response.

LS

4T

‘:/‘277‘5 {

The antenna will have a null on boresight. The approximate beam peak can
be determined from the universal pattern. Regardless of the value of S, the
peak occurs at U = 2.43 .

Z/—TéS’/NG = 2,43

@MA)( = Smw —/('__‘_3_8_7_{,‘)
ey
On page 276 is a pattern of a circular horn excited in the TM01 mode.
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CIRCULAR WAVEGUIDE HORN IN TM—-01 MODE
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FREQ GHZ) = 12. 000 ] _ FREQ (GHZ) = 15. 000
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x> EMAX = B.5

o
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FREQ (GHZ) = 186. 000

Polar Chart No. 127D
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Chapter 8 Horn Antennas

Now let us consider the @ component. From symmetry alone we can see that
the @ component is zero. The fields are equal and opposite in direction
across a line symmetry drawn radially along ¢ = 0, These fields will
cancel each other. We can also find this from the mathematics. The ¢
component is found from this integral at @ = O,

o e '‘Bp SINBcosd X
Eg = ;Eo[ fj: (ég) s d eJ/Bf “e—\/'%,%rodjodﬂ

When we integrate the ¢c component, we find

ar ,
/5f~¢< oV A oS b g =0
(o]

From symmetry all integrals for an arbitrary @ are zero and there is no
#® component in the far field. This horn is similiar to the TM.. mode in
rectangular waveguide. When mounted on a model tower positioner, the
antenna is always horizontally polarized. If mounted on a satellite and
pointed toward the earth, it would receive signals which are vertically
polarized on the earth except straight down where there is a null in the
pattern.

TE01 MODE HORN

The TE0 mode horn is the dual of the TM 1 mode horn., This horn is always
vertically polarized when mounted on a mogel tower positiomner. From the
equations on page 261 we find the waveguide fields as

4 P _
Ep = Lo T(KuL) RT =5

Ey = £, 7, (%if)

The second expression is the equation of the field in the aperture plane with-

out the quadratic phase factor and Xét11 is the first zero of the derivative
e

of Jo(x). These fields are given in figure below.

Similiar to the TMO mode, the fields are the same in the aperture if the
antenna is rotated %y any amount and all azimuth patterns will be the same.
The far field @ component is found from the following integral.

W ,q
— ‘ BpSw@ Casp. _ ' TT *
Fo- £ [ [T ot 0 IR g

]
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Chapter 8 Horn Antennas

This is the same integral as the TM pattern integral except for a constant
in the Bessel function. We can per%orm similiar integrations and substitu-
tions on the integral as were done on the TM,. integral and find a universal
radiation pattern which is given on page 279. It is similiar to the TM
mode pattern. The ordinate is a voltage pattern and the obliquity factor,
(1 + Cos 0)/2, has beeen removed from the pattern. The maximum of the
pattern occurs at approximately U = 2,9 for small values of S (large

slant radius, R). Using this the maximum of the pattern is found.

®)

MAX Sin-l( .462 A[/A) for reasonable tapers

EXCITATION OF HIGHER ORDER CIRCULAR WAVEGUIDE MOUDES

The TM .., mode can be excited directly from coax by flaring the outer shield
of a coax until the diameter is sufficient to support the TM.. mode. At that
point the center conductor can be tapered to nothing and the IM,. mode is
launched in the waveguide. If good symmetry is maintained, then the TE

. . : 11
lower order mode will not be excited.

Coax jgjsgsifjsjgjﬁﬁsﬁsjgjjjz Waveguide
Mode

This is: a handy way to start the waveguide horn because the center conductor
of the coax can be tapered to give a broadband match between the coax and
the horn. When a waveguide alone is being excited, the transition between
the coax and the waveguide is made abruptly and the center pin of the coax
becomes a probe which excites the waveguide. The length of the probe is
adjusted to give a good match,

——.

The TE,, mode is more difficult to excite cleanly. It is the fourth possible
mode in"the waveguide and so the other modes will be excited easily. This
mode will be excited when the end of the waveguide is fed by four rectangular
waveguides arranged as in the figure below.

Rectangular Waveguide

Excitation of TE01

\ Diagram Looking into

(=
K_,.,

Mode in Circular Waveguide

Waveguide
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CIRCULAR WAVEGUIDE HOKN IN TE~U1
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Chapter 8 Horn Antennas

If the rectangular waveguides are fed in phase as shown in the diagram,
then the TE01 modes will be excited in the circular waveguide.

One method of cleaning up the modes is to use mode suppressors in the
waveguide to cut off all unwanted modes. The following is used as a mode

suppressor for the TM11 mode.

1 4

The TM,., mode will be unaffected by a series of concentric cylinders in the
waveguide. These will suppress the TE11 mode,

An unwanted mode suppressor that is used with the TE01 mode is shown below.

&

The radial fins in the waveguide can be used to suppress the TE ., TM ., and
TE,, modes in the circular waveguide. One problem with this méthod is that
whéfi the mode suppressor ends, the discontinuity will regenerate the lower
order modes again. The suppressor cannot completely eliminate the lower

order modes.
SLOTS IN CIRCULAR WAVEGUIDES

Before we leave the discussion of circular waveguides, we need to discuss
cutting slots in the waveguide walls, We will assume that the slot is

a resonant length and very thin. The electric field will be across the
slot regardless of the fields or currents exciting it. The slot is
excited when it cuts currents in the waveguide walls.

We must first calculate the currents in the walls of the waveguide. The
currents can be found from the tangential magnetic fields and application
of the boundary conditions given on page 154; the surface current density

is given by:

- ~
= x
JS nxH
The normal vector, fi, to the walls is - Ef . Using this we can expand the
curl by the determinant notation.
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a’ﬁ a¢< Az
:I;-z — 1 o o = }£EZE¢ — ¢l¢,2i;
He o He My

TE11 MODE CURRENTS
Using the equations for the TE modes on page 261, we find both components
of the current on the wall,

Tp = —Eo (pPa) T(xi) cos§ eI
J oM

E - .
J; = Zué’i' J"‘(z”z) S/A}¢ © J/3~z-2
/M

Notice that the Z directed currents are in phase with the electric field and
are traveling waves in the guide. The @ directed currents are 90 degrees
out of phase with the electric field and are standing wave: .currents. We need
to redraw the mode pattern in the waveguide to establish the coordinate
system.

TE11 Mode —_— p =0

Let us consider the wall at @ = 0. The Z directed currents are zero (Sin 0
= 0). In the figure below, the slot a does not cut any net current., The
current below the line @ = 0 is matched by current above @ = 0 which is
flowing in the opposite direction (Z directed currents).

D A

The slot b will be excited by @ directed currents which are at a peak.
(Cos 0 = 1). These slots, centered at $ = 0,are the same as sidewall slots
in rectangular waveguide. Since they are excited by the circulating @
currents, they are shunt loads to the waveguide,

Consider the slots centered about @ = 900.

/) /AP S ) 4= 90
'’ 0
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The slot a will eut currents in the Z direction and will be excited,

The slot b is also excited by Z directed currents; the @ directed currents
on both side of the center line that we cut by the slot are equal and opposite.
The slot ¢ is not excited because it can only cut @ directed currents

which are zero at @ = 90 degrees ( Cos(90°) = 0), This slot would be

used for probing the waveguide to measure VSWR. These slots are similiar

to the top wall slots of the rectangular waveguide. Since they cut the
traveling wave currents, they are series loads to the waveguide.

All slots which are placed so that they are not centered on these two axes
will be excited, Slots with their long axis parallel to the Z axis will
be shunt loads to the waveguide because they cut standing wave currents.,
Slots with their long axis in the @ direction will be series loads to the
waveguide because they cut traveling wave currents. All slots which are
not parallel to these axes will be compound loads to the waveguide.

TM01 MODE CURRENTS
We can use the equations on page 262 to find the wall currents in the circular
waveguide when propagating the TMO1 mode,

J¢ =0 Since Hz =0 (True of all TM modes)

X :
= - = 01 o -iBg 2
Jz H.¢ 2 JO(X01) e z
The currents in the side walls are only Z directed and there is no @

dependence. The currents are the same as those for a coax line in the

TEM mode.
c::éé:: 644;2

The slot a 1is not excited, but b which cuts Z directed currents is excit-
ed. Another method of exciting slots is to stagger cut the slot .in the wall
as shown below.

—

This slot, whose total length is resonant, is excited by the small portion
of the slot cutting Z directed currents. The excitation level can be
varied by changing this length.

Notice that there is a current flowing on the wall in the Z direction but

there is no return current as in the case of TEM mode coax or TE11 mode
circular waveguide.
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TE01 MODE CURRENTS

The wall currents of the TE01 mode are found to be

Ty = Lo (g~ BL) Tu(ko)) €V /2T
J e

but X is the first zero of the Bessel function J,(x). There are no ¢
directed currents. Since H, = 0 (n = 0), there are no.Z directed currents
either, There are no wall currents at all for the TE_ . mode. Any slots
that are cut in the walls of the waveguide supporting the TE01 mode will
not be excited.

Most of the losses in waveguide are due to wall currents, because there are
no wall currents in the TE_ . mode, the losses are very small. Many years
of work have been devoted to investigating this mode for use in transmitting
telephone channels., Bends are a big problem because they generate lower
order modes,

CORRUGATED HORNS

One of the chief uses of horns is for feeds of large reflector antennas. In
these applications it is desirable or require<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>